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CFDRN: A Cognition-Inspired Feature
Decomposition and Recombination Network for
Dysarthric Speech Recognition

Yugin Lin ", Longbiao Wang

Abstract—As an essential technology in human-computer inter-
actions, automatic speech recognition (ASR) ensures a convenient
life for healthy people; however, people with speech disorders, who
truly need support from such a technology, have experienced dif-
ficulties in the use of ASR. Disordered ASR is challenging because
of the large variabilities in disordered speech. Humans tend to
separately process different spectro-temporal features of speech in
the left and right hemispheres of their brain, showing significantly
better ability in speech perception than machines, especially in
disordered speech perception. Inspired by human speech process-
ing, this article proposes a cognition-inspired feature decomposi-
tion and recombination network (CFDRN) for dysarthric ASR.
In the CFDRN, slow- and rapid-varying temporal processors are
designed to decompose features into stable and changeable features,
respectively. A gated fusion module was developed to selectively
recombine the decomposed features. Moreover, this study utilised
an adaptation approach based on unsupervised pre-training tech-
niques to alleviate data scarcity issues in dysarthric ASR. The
CFDRNs were added to the layers of the pre-trained model, and
the entire model is adapted from normal speech to disordered
speech. The effectiveness of the proposed method was validated on
the widely used TORGO and UASpeech dysarthria datasets under
three popular unsupervised pre-training techniques, wav2vec 2.0,
HuBERT, and data2vec. When compared to the baseline meth-
ods, the proposed CFDRN with the three pre-training techniques
achieved 13.73% ~16.23% and 4.50% ~13.20% word error rate
reductions on the TORGO and UASpeech datasets, respectively.
Furthermore, this study clarified several major factors affecting
dysarthric ASR performance.
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1. INTRODUCTION

PEECH production is a significantly complex process re-
S quiring the coordination of various muscles and motor
control and also involves the brain [1], [2]. Disorders such as
cerebral palsy(CP), amyotrophic lateral sclerosis (ALS), Parkin-
son’s disease, stroke, or traumatic brain injuries can affect this
process and result in a speech disorder [3], [4], [5], [6], [7].
These disorders affect the ability of a speaker to produce natural
sounds and lead to decreased speech intelligibility and com-
munication impairment, as observed in the cases of stuttering,
speech apraxia, and dysarthria [8], [9]. Moreover, people with
speech disorders who are also affected by physical disabilities
may experience difficulties in remotely controlling the keyboard
or mouse and other machine interfaces [10], [11], [12]. Auto-
matic speech recognition (ASR) is an alternative method for
alleviating this problem. However, the current ASR systems
do not benefit people with speech impairments because their
speech varies significantly from normal speech. Therefore, a
suitable disordered ASR system is required for speakers with
speech disorders. To achieve this, this study aimed to build a
speaker-independent ASR system so that the maximum possible
patients can benefit from this technology at a limited cost.
Moreover, a dysarthric ASR task was introduced as a benchmark
to measure the effectiveness of the proposed methods, where
dysarthria is a clinical category of neurogenic motor speech
disorders associated with muscle weakness [13].

The primary challenges faced by disordered ASR are the high
variability in disordered speech and limited amount of available
data. Speech disorders affect the articulation of speakers and
lead to speech variations that are considerably different from
normal speech. Such speech variations are characterised by
unclear, unstable, and inaccurate pronunciations [7] and may
partly include deletions, substitutions, insertions, and distortions
of phonemes [14]. Previous studies have shown that variations
in speech patterns occur even when individuals suffer from the
same degree of speech disorders [15], [16]. Such high inter-
and intraspeaker variabilities significantly reduce the robustness
of disordered ASR. To build an ASR system that is suitable
for most speakers with varying degrees of speech disorders, a
large amount of disordered speech data is required for train-
ing. However, obtaining sufficient speech data is challenging
because speakers with speech disorders usually struggle with
articulation.
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To address the problems of disordered ASR, adaptation meth-
ods have been extensively deployed and have demonstrated good
performance. Two categories of adaptation methods have been
explored: a) acoustic adaptation, which transfers knowledge
from the model of normal speech to the model of disordered
speech [17], [18], [19], [20], and b) pronunciation dictionary
adaptation, which carefully designs a pronunciation dictionary
for a specific speaker according to his/her articulation [14],
[21]. Speech variations directly result in ill-suited acoustic
models. Therefore, this study focused on acoustic adaptation.
In acoustic adaptation, most previous studies focused on ASR
for individual speakers; therefore, they did not consider inter-
speaker variability. Our previous study [17] proposed a stage
knowledge distillation for multiple speakers. However, only
labelled speech was leveraged, which limited the improvement
of the disordered ASR. Recently, unsupervised pre-training tech-
niques have demonstrated a strong transfer ability, particularly in
low-resource tasks [22], [23], [24], [25], [26], [27]. Adaptation
methods based on these approaches have attracted considerable
interest. In addition to the direct fine-tuning method, the ap-
proaches that add adapters to a pre-trained model have been
widely studied [28], [29], [30]. Although these methods achieve
parameter-efficient adaptation and competitive performance in
low-resource tasks, their performance is worse than that when
the entire model is fine-tuned. These methods are suitable for
situations in which frequent adaptations are required. Moreover,
although the adapters reduced the mismatch between normal and
disordered speeches to a certain extent, our experiments showed
limited improvements in disordered speech because of the high
variabilities in speech.

When compared to machines, the human brain has an ex-
traordinary ability to perceive speech, especially highly variable
speech [31], [32]. Human speech processing is a useful tool of
reference for machine speech recognition. Typical timescales
associated with prominent rhythmic activity in the brain, are
often defined as follows: delta, 1-4 Hz; theta, 4-8 Hz; alpha,
8-12 Hz; and gamma, above 30 Hz [33]. Previous research
on cortical oscillations and speech processing found that the
lower band (slow components) corresponds to comprehension
at the syntactic level, while the higher band (rapid components)
corresponds to comprehension at the word level [33], [34],
[35]. In speech processing by human brain, the right-hemisphere
auditory areas are sensitive to slowly varying temporal features,
whereas the left-hemisphere auditory areas are sensitive to
rapidly varying temporal features [36], [37]. This indicates that
the right hemisphere is predominantly responsible for coding
stable features of speech, and the left hemisphere predominantly
responsible for coding the changeable features of speech [38].
The interaction of the two features affects the transmission and
coordination of information between brain regions to complete
the speech processing, where slowly and rapidly varying waves
exist in each brain area [39], [40]. This processing corresponds
to the decomposition of speech features in speech cognition.
Speech features can be divided into stable features and change-
able features. Similarly, the speech features input into a machine
can be treated as a recombination of stable and changeable
features. Stable features are the common parts of phonemes
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under the same perceptual category, which play a decisive
role in recognition, but do not vary with context. Changeable
features play a supplementary function to phoneme recognition,
but are indecisive. The robustness of human speech processing
capabilities partially results from the suitable decomposition and
organic recombination of the stable and changeable features in a
variety of contextual situations, especially for disordered speech.
Accordingly, the decomposition and recombination of speech
features are more conducive to learning varied speeches, such
as dysarthric speech.

Inspired by human speech processing mechanisms, this study
proposes a cognition-inspired feature decomposition and re-
combination network (CFDRN) to address the challenges of
disordered ASR. In CFDRN, speech features are decomposed
into slow and rapid components using our designed slow- and
rapid-varying temporal processors. The slow-varying temporal
processor is designed based on fast Fourier transform (FFT)
to extract stable speech features. The rapid-varying temporal
processor is designed based on multilayer perceptions (MLPs)
to extract changing features. Then, correlation weights of the
decomposed features are developed from the speech features.
Finally, the features are recombined using a gated fusion mod-
ule (GFM). Similar to the human speech cognitive function,
the CFDRN is added into the layers of an original network
that is pre-trained with unlabelled normal speech. The en-
tire model is trained using dysarthric speech data. Experi-
ments were conducted on the commonly used TORGO and
UASpeech dysarthric corpora. The effectiveness of the proposed
method was verified by comparing it with three popular unsu-
pervised pre-training frameworks, wav2vec 2.0, HuBERT, and
data2vec.

The primary contributions of this study are summarised as
follows.

1) A novel CFDRN is proposed for disordered speech recog-
nition. It is inspired by the human speech cognition
mechanism, decomposing the features into slow and rapid
components before reasonably recombining them. Exper-
iments conducted under three unsupervised pre-training
frameworks on two corpora validated the effectiveness of
the CFDRN.

2) A slow-varying temporal processor was designed to ex-
tract stable features more effectively and efficiently. The
extracted stable features were robust in the analysis of
disordered speech and play a decisive role in disordered
speech recognition.

3) A GFM was developed for the recombination of stable
features and changeable features. The GFM improves the
ASR performance, particularly for severe or moderate
(S/M) dysarthric speakers.

The remainder of this article is organised as follows.
Section II reviews advances in dysarthric speech recogni-
tion and unsupervised pre-training methods. Section III de-
scribes our proposed method. Section IV presents the exper-
imental results and analyses. Section V provides a detailed
discussion of the strengths and limitations of the proposed
method. The conclusion and future work are presented in
Section VI.
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II. RELATED WORK

A. Dysarthric Speech Recognition

Previous research on dysarthric speech recognition has
attempted to deal with the large variations in dysarthric speech
and limited amount of available data. Recently proposed meth-
ods can be classified into three broad categories: a) model
architecture based approaches [41], [42], [43] that aid models in
recognising dysarthric speech; b) data augmentation approaches
that expand the speech data of typical or atypical speakers [44],
[45], [46], [47], [48], [49], [50] or transforms normal speech
to ‘dysarthric-like’ speech [51], [52], [53], [54]; ¢) embedding-
based approaches [55], [56], [57] that add auxiliary features such
as articulatory features into acoustic models; and d) adaptation
approaches that transfer knowledge from an ASR for normal
speech to one for dysarthric speech [17], [18], or transfer
it further to a model for individual dysarthric speech [19],
[20].

Our CFDRN was designed based on a technique that adapts
an ASR for normal speech to one for dysarthric speech. In this
category, certain studies have applied adaptation to acoustic
models, while others have applied adaptation to pronuncia-
tion dictionaries. For example, for acoustic model adaptation,
Lin et al. [17] proposed a staged knowledge distillation method
that takes full advantage of a teacher model that learns from
normal speech and avoids overfitting. For pronunciation dictio-
nary adaptation, Mengistu et al. [14] analysed the pronunciation
characteristics of dysarthric speakers and designed a suitable
lexicon. Sawa et al. [21] utilised a phoneme-recognition model
for pronunciation analysis and created an adaptive dictionary for
individual dysarthric speakers. This study focused on acoustic
model adaptation.

Previous studies have only leveraged labelled speech, which
limits the improvement in dysarthric ASR. Recent studies have
focused on adapting an unsupervised pre-training model to
the target task to obtain a model from the maximum amount
of unlabelled data. Direct fine-tuning of the source model is
the most commonly used approach, although the performance
may be affected by a large mismatch between the source and
target data. Therefore, the technique of inserting an adapter
into a pre-trained model has garnered interest. The effectiveness
of this technique has been verified in several tasks, such as
natural language processing [28] and visual recognition [29]
tasks. In the speech recognition field, Tomanek et al. pro-
posed a residual adapter for accented and atypical speech
recognition [30]. These methods achieve parameter-efficient
adaptation and competitive performance on low-resource tasks;
however, their performance is worse than that obtained when
fine-tuning the entire model. Nevertheless, these methods are
suitable for situations in which frequent adaptations are required.
Fan et al. [58], [59] proposed an adaptation at the pre-training
stage, followed by fine-tuning of the entire model for child
speech recognition. This exhibited a higher cost than the adapta-
tion approach reported in this study. Moreover, the experiments
in this study demonstrated that these model adaptation ap-
proaches are not so effective for speaker-independent dysarthric
ASR.
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B. Unsupervised Pre-Training Methods

In the speech processing field, the unsupervised pre-training
method learns speech representations from a large amount of
unlabelled speech and then fine-tunes the model for the down-
stream target task [23], [24], [25], [26], [27]. Previous studies
demonstrated the competitive performance of this technique in
dealing with a variety of speeches, particularly in the case of
limited available data [22]. Based on the training objective, these
methods can be classified as follows: a) generative learning tech-
niques, such as wav2vec 2.0 [24], which recover masked frames
by contrastive objectives; b) discriminative learning methods,
such as HuBERT [25], wavLM [60], and data2vec [26]. These
models predict discrete targets of masked regions from a large
amount of speech. HUBERT uses an acoustic discovery system
instead of the contrastive learning used in wav2vec 2.0. WavLM
further improves HuBERT by transforming the input features.
It solves full-stack downstream speech tasks. Data2vec [26]
predicts contextualised latent representations through a teacher-
student mode. It uses the same learning method for either
speech, natural language processing, or computer vision. The
unsupervised pre-training method eliminates the requirement for
labelled data and has been proven to be effective in low-resource
speech tasks [22].

Based on previous work, this study aimed to explore an effec-
tive adaptation method for dysarthric ASR using unsupervised
pre-training models.

III. PROPOSED COGNITION-INSPIRED FEATURE
DECOMPOSITION AND RECOMBINATION NETWORK (CFDRN)
FOR DYSARTHRIC ASR

To solve the problems of dysarthric ASR, this study utilised an
unsupervised pre-training technique to train a speech represen-
tation model using normal speech. Then, we added a CFDRN to
the layers of the speech representation model. Finally, we trained
the entire network to adapt the speech representation model for
dysarthric ASR.

A. Model Architecture

The proposed model architecture uses a Transformer
model [61] as its backbone. The pre-trained model is composed
of feature extraction and context networks. The feature extrac-
tion network comprises a stack of convolutional neural networks,
while the context network comprises a Transformer encoder,
which consists of blocks of self-attention and feedforward lay-
ers. As shown in Fig. 1, the blue parts of the model are first
initialised using the unsupervised pre-training techniques with a
large amount of normal speech data. Then, the proposed CFDRN
is added after the self-attention and feedforward layers of each
block, as shown by the yellow parts of the model in the figure. A
linear layer is added after the last layer of the CFDRN to predict
characters (shown in the green parts of the figure). Finally,
the entire model, including the CFDRN modules and others, is
updated. Note that we did not distinguish between the training
of the CFDRN modules and that of the other modules, we
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Fig. 1.

Overall model architecture of the proposed method.

implemented the functionality of CFDRN through initialization
and model architecture alone.

B. The Architecture of CFDRN

The high variabilities in disordered speech lead to difficul-
ties in ASR. The human brain has the extraordinary ability to
deal with variations. According to previous studies on human
speech perception, the human brain tends to process slow-
/rapid-varying temporal features separately in the right-/left-
hemisphere auditory areas, respectively [36], [37]. The interac-
tion between these features influences information transmission
and coordination across brain regions during speech processing,
with the presence of slow and fast oscillations within each
brain area [39], [40]. Inspired by this process, we propose the
CFDRN. In the CFDRN, we divided the speech features of
each layer into two groups, one has more slow components,
and the other has more rapid components, and proposed the
gated fusion modules (GFM) to realise their interaction through
modulation via different activation functions. The architecture
of the CFDRN is illustrated in Fig. 2. The central part of the
figure shows the components of the CFDRN. The left and right
sides of the figure show details of the slow- and rapid-varying
temporal processors, respectively. The top of the figure shows
the details of the proposed GFM.

Given a hidden speechrepresentation H = {h;, ..., hx|h; €
RP 1 < i < N}oflength N with D dimensions, we can split H
by an « proportion along the dimension of the feature channels
into sets of pre-processed stable features H and changeable
features H*. The shape of H” is N x D¢, where D¢ = o x D
and the shape of HA is N x D4, where D4 = (1 — a) x D.
o = 0.5 indicates that slow and rapid components are equally
important in ASR. o > 0.5 indicates that the slow components
are dominant in ASR, and vice versa. HC is fed into the
slow-varying temporal processor Psjqy t0 extract stable features
FC, whereas H* is fed into the rapid-varying temporal proces-
SOr Prapia to extract changeable features F4. This process is
expressed as follows:

H = [H"; H], (D
FC = Psjon(HY), (2)
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F4 = Prypia(H?). A3)

We use FEC to denote the recombined features, which are
calculated using the GFM Mgygon. This module selects and
combines the stable and changeable features F¢ and F4, re-
spectively, by referring to their original hidden speech represen-
tations H. The formula for this process is as follows.

FRC = Mpysion(HY, HA FO F4). “)

The recombined features F 1 are the outputs of the CFDRN.
Hidden speech representation is decomposed and selectively
recombined to deal with the variabilities in dysarthric speech,
similar to the human speech cognition.

C. Extractions of Slow and Rapid Components in Speech
Features

The Fourier transform (FT) is the link between the time
domain and frequency domain [62]. However, the result of FT is
affected by the frame size. If a signal has a frame size of 20 ms,
the frequencies below 50 Hz cannot be shown in the frequency
domain because of its frequency resolution. Neural networks,
which are good at modelling long-term signals, make up for
this by considering information across the frames. Because the
neural network has a recurrent mechanism, it can remember
sequences over a wider span, and hence compensate for the
limitations caused by the frame size of the FT. Therefore, we
use FFT with a recurrent framework to extract slow-varying
temporal features.

Specifically, in the slow-varying temporal processor, the pre-
processed stable features H® are mapped to alower-dimensional
space by down-projection. The lower-dimensional features are
denoted as LC. The advantages of this step are that it removes
redundant information from the features, saves storage space and
reduces computations. Then, we apply a 1D FFT to the frames
of LY. The outputs of the FFT are complex-values, including
real numbers and imaginary numbers. In the frequency domain,
we use two MLPs to transform the outputs of the FFT, and
an inverse Fourier transform to transform the features into the
time domain. To reduce the computation budget, the MLP is
designed as a bottleneck framework, which first reduces and
then increases the dimensionality of the features. Finally, the
time-domain transformed features are projected onto a space
with equal dimensions of H® . The features after up-projection
are stable features F©.

We attempt to explain mathematically how our method ex-
tracts slow-varying temporal features given the limitation of the
frame size. The process can be formulated as follows:

Psiow(H) = FH(G(F(H?))), Q)

where F is the FFT function, and F~! is the inverse FFT
function. G is a nonlinear system, consisting of multiple stacked
linear layers and activation layers. To simplify the calculation,
we consider the case in which G consists of one linear layer and
one activation layer, which can be formulated as:

G(x) =AW =xx+Db), (6)
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where A is the activation function. W is the weight applied to
input vector x and b is the bias. In our case, G is a nonlinear
system acting in the frequency domain, and hence W and b are
complex-values.

The output Pg;o. (HE) consists of slow-varying features
when they satisfy the following inequality:

N-1
Z{[PSlow (hich-l) - PSlow(h?)] - (hg—l - th)} < 07 (7)

i=1

where h¢ is the i-th frame of pre-processed H®. By combining
(5-6) and inequality (7), the inverse Fourier transform of the
bias b is the impulse function d(t), and its variation is infinite.
Therefore, if expression (7) is valid, it must satisfy b = 0. Then,
the inequality 5 can be written as follows:
Psiow(HY) = FH (A(W(F(H)))). ®)
For activation function A, we use the ReLU function to apply
a nonlinear transform. Therefore, activation function A serves
as a filter that filters out unwanted frequency components. This
process is controlled by the optimization of weight W. When the
elements of W(F(H®)) <= 0, the corresponding frequency
component is removed. When the elements of W (F(H®)) > 0,
(8) can be written as:

Psiow(HY) = FH(W(F(H))). )

Architecture of the proposed cognition-inspired feature decomposition and recombination network (CFDRN).

According to the linearity of the FT, the outputs Pg;o,, (HE)
are slow-varying features when they satisfy the following in-
equality:

N-1
> AWip b, — W, «h{) — (h(,, —h{)} <0, (10)
1=1

where W is the weight of the ¢-th frame. From the previous
definition, we know that W = Ae’/®, where A = ||[W/||, and
is the phase. Therefore, when A is less than 1, inequality (10) is
valid.

If the nonlinear system applied on the frequency domain
satisfies

b =0, (11
Wl <1,

we can extract slow-varying temporal features from the system.
The above mathematical proof is referenced from [62]. In our
slow-varying temporal processor, we did not use bias vectors,
and initialised the weights as very small values close to zero to
ensure the processor has the ability to extract slow-varying tem-
poral features. Then, the processor learns to perceive dysarthric

speech during training.
In the rapid-varying temporal processor, we used an MLP
to extract the details of the hidden speech representation. The
pre-processed changeable features H4 are first down-projected
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by a linear layer. After a nonlinear transformation, they are up-
projected to the original dimensions, similar to the slow-varying
temporal processor. We used GELU activation to perform the
nonlinear transformation. The changeable features F are ex-
tracted after layer normalization.

D. Gate Fusion Module

The interaction between slow- and rapid-varying temporal
features plays an important role in speech processing in the brain.
This interaction is related to the modulation of the amplitude and
phase of the two features [40]. Inspired by this, we propose the
GFM, using two activation functions to constrain the extrac-
tion of slow- and rapid-varying temporal features. Specifically,
we use a linear layer followed by the sigmoid function to
generate a correlation coefficient from one set of features, and
we use the tanh function applied to the other set of features
to describe the positive and negative effects of the interaction.
When stable features with correlation are extracted, the correla-
tion coefficients are obtained from the pre-processed changeable
features H”. The sigmoid function constrains the value of the
correlation coefficient between 0 and 1, and the tanh function
is applied to the pre-processed stable features H” . This usage
of two activations is similar to that in [63], [64]. In brief,
the obtained recombined stable features RC and changeable
features R4 are expressed as follows:

RE = Figmoiad( WP P « HY) © Fumn(FC),  (12)

R* = Fiigmoa(WPP" « HO) © Fun(FY),  (13)

where WP**P and WP *D* are learnable weights ap-
plied to the pre-processed features H and H, respectively.
* denotes a convolution operator and ® denotes an element-
wise multiplication operator. Femoia 1S a sigmoid function,
and Funn 1S a tanh function. The recombined stable features
obtained by multiplying the outputs of the two activations. The
recombined changeable features are also obtained in a similar
manner. Finally, the recombined features FC are obtained by
concatenating the recombined stable and changeable features
along the feature channels.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Datasets

The proposed methods were validated using two commonly
used dysarthria datasets: TORGO [65] and UASpeech .! More-
over, the unsupervised speech representation model was trained
on the LibriSpeech ASR corpus [66], which contains 1,000 h of
reading speech with a 16 kHz sampling rate.

The TORGO database consists of data from eight dysarthric
speakers with varying degrees of CP or ALS and seven healthy
control speakers. Speech files in the dataset were recorded
using a microphone array and head-worn microphone with a
16 kHz sampling rate. The recordings lasted for 7 h, with 3 h
of dysarthric speech and 4 h of normal control speech. There

![Online]. Available: http://ifp-08.ifp.uiuc.edu/protected/ UASPEECH
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are 16,432 utterances in total, of which 4,171 are multiword ut-
terances and 12,261 are single-word utterances. The UASpeech
corpus comprises data from 15 dysarthric speakers with CP and
13 healthy control speakers. Speech files in the corpus were
recorded using seven microphones at a 16 kHz sampling rate.
The original recording contained long silent segments at the
beginning and end of the audio recording. After cleaning the
data following [55], the recordings lasted for 78.5 h, with 47.8 h
of dysarthric speech and 30.7 h of normal control speech. There
are 143,550 single-word utterances. Dysarthric speakers in these
datasets were classified into four severity levels: severe, severe
to moderate, moderate and mild.

The training, development, and test sets were divided accord-
ing to the speaker, considering the severity levels of dysarthria. A
speaker can only be included in one set. Therefore, the speakers
in the three sets were not the same. Each set must contain
speakers with various degrees of dysarthria. Specifically, for
the TORGO database, the training set contained three speakers
with S/M dysarthria (FO1, M04, and MO0S5) and all healthy
control speakers. The development set included one speaker
each with severe dysarthria (M01) and mild dysarthria (FO4).
The remaining two speakers with S/M dysarthria (M02, and FO3)
and one speaker with mild dysarthria (M03) were included in the
test set. For the UASpeech corpus, the training set contained four
speakers with S/M dysarthria (FO3, M12, M07, and M05), two
speakers with mild dysarthria (M09 and M14), and all healthy
control speakers. The development set contained two speakers
with S/M dysarthria (MO1 and F02) and two speakers with mild
dysarthria (M11 and M10). The test set contained three speakers
with S/M dysarthria (M04, M 16, and FO4) and two speakers with
mild dysarthria (MOS8, and FOS).

B. Experimental Settings

All experiments were conducted using the open-source se-
quence modelling toolkit, Fairseq [67]. The proposed method
was validated using three widely used unsupervised pre-training
approaches: wav2vec 2.0, HuBERT, and data2vec. WavLM was
not included in this study because we only focused on speech
recognition tasks. When compared to wavLM, HuBERT has
shown competitive performance in low-resource cases [60].
We chose the base models of the three approaches comprising
approximately 95 M parameters as the baseline, which have been
released on the official website.> The context network contained
12 transformer blocks with model dimensions of 768, inner
dimensions (feedforward layer) of 3,072, and eight attention
heads. All models were trained on a single NVIDIA V100 GPU.
The batch size was set to 200 s. The Adam optimiser [68] was
adopted with a warm-up learning rate similar to that in [24].
The learning rates were set to 1e-4 and 5e-5 for the TORGO and
UASpeech datasets, respectively. For wav2vec 2.0 and data2vec,
the models for the TORGO and UASpeech datasets were trained
with 45 k and 90 k iterations, respectively. For HUBERT, the
model for the TORGO and UASpeech datasets was trained with
60 k and 100 k iterations, respectively. A greedy search was

2[Online]. Available: https://github.com/facebookresearch/fairseq
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TABLE I
COMPARISON OF DYSARTHRIC SPEECH RECOGNITION PERFORMANCE (WORD ERROR RATE%) OF DIFFERENT APPROACHES ON THE TORGO AND UASPEECH
DATASETS

D Pre-training Method MOdi/l[ Size TORGO UASpeech

M) Dev Test Avg. Dev Test Avg.
1 Wav2vec 2.0 Baseline 94.4 22.77 25.55 24.58 51.35 32.67 40.61
2 Wav2vec 2.0 PE-Adapter [28] 103.9 23.02 25.25 24.47 47.22 30.09 37.38
3 Wav2vec 2.0 RA [30] 104.7 21.64 23.15 22.62 51.91 33.16 41.14
4 Wav2vec 2.0 AdaptFormer [29] 103.9 22.51 24.72 23.96 52.52 32.96 41.28
5 Wav2vec 2.0 CFDRN (Ours) 106.4 19.19 21.97 21.00 44.71 28.26 35.25
6 HuBERT Baseline 94.5 21.44 24.83 23.65 51.51 31.30 39.89
7 HuBERT PE-Adapter [28] 104.0 19.75 23.96 22.50 51.36 31.76 40.09
8 HuBERT RA [30] 104.8 19.36 23.47 22.04 52.83 33.39 41.66
9 HuBERT AdaptFormer [29] 104.0 21.92 24.86 23.83 50.28 30.79 39.08
10 HuBERT CFDRN (Ours) 106.5 17.92 21.72 20.40 47.97 29.68 37.46
11 Data2vec Baseline 932 18.48 21.13 20.21 47.89 29.78 37.48
12 Data2vec PE-Adapter [28] 102.7 17.47 21.09 19.83 48.45 28.51 36.99
13 Data2vec RA [30] 103.4 19.41 19.71 19.61 48.43 29.16 37.35
14 Data2vec AdaptFormer [29] 102.7 17.44 20.92 19.71 47.57 28.86 36.82
15 Data2vec CFDRN (Ours) 105.2 14.60 18.17 16.93 46.21 28.07 35.79

Bold entities indicate that method achieved the best performance compared to methods with similar experimental Settings.

performed during the evaluation. A language model was not
used in our experiments.

C. Results

We trained the ASR model separately on the two datasets.
We evaluated the proposed CFDRN by comparing it with three
mainstream unsupervised pre-training techniques: wav2vec
2.0, HuBERT, and data2vec, on the TORGO and UASpeech
dysarthria datasets. Because of the high inter- and intraspeaker
variabilities, each speaker has different impacts on ASR, even
when they have the same degree of dysarthria. Analysing more
speakers will help us discover the more general advantages
and disadvantages of the proposed methods. Therefore, for a
more objective comparison and analysis, we provided the word
error rate (WER) for both the development and test sets. The
baselines were pre-trained using the three unsupervised pre-
training methods and directly fine-tuned to the dysarthric ASR
task. We compared three popular adaptation approaches [28],
[29], [30] to fine-tune the pre-training model by plugging a
supplementary network into it. The principal difference between
these approaches lies in the architecture of the supplementary
networks. The parameter-efficient adapter (PE-Adapter) [28]
adds linear layers after the self-attention layer and after each
block of the encoder. The residual adapter (RA) [30] adds a bot-
tleneck network after the feedforward layer. AdaptFormer [29]
adds a scaled bottleneck network parallel to the feedforward
layer. To achieve competitive performance on dysarthric ASR,
the compared methods applied the adaptation by updating the
entire model.

1) Primary Results of the CFDRN: Table 1 compares the
dysarthric ASR performances (WER%) of the different ap-
proaches on the TORGO and UASpeech corpora. The results
show that the data2vec model is more suitable for initializing
dysarthric ASR than the wav2vec 2.0 and HuBERT models
(comparing ID-1, ID-6, and ID-11). The three compared ap-
proaches were not beneficial for all datasets, possibly because
of the variations in dysarthric speech across speakers. Specif-
ically, the PE-Adapter pre-trained with HuBERT degraded the

performance of ASR on the UASpeech corpus. RA pre-trained
with either wav2vec 2.0 or HuBERT performed worse than
the baseline on the UASpeech corpus. AdaptFormer pre-trained
with wav2vec 2.0 and HuBERT was not efficient on the TORGO
and UASpeech datasets, respectively. The results suggest the
necessity for a dysarthric ASR to insert a well-designed net-
work into the pre-training model, which was the focus of this
study. When compared to the wav2vec 2.0-based baseline, the
CFDRN achieved WER reductions (WERRs) of 14.56% and
13.20% on the TORGO and UASpeech datasets, respectively.
When compared to the HuBERT-based baseline, the CFDRN
achieved relative WERRS of 13.74% and 6.09% on the TORGO
and UASpeech datasets, respectively. When compared to the
data2vec-based baseline, the CFDRN achieved relative WERRs
of 16.23% and 4.51% on the TORGO and UASpeech datasets,
respectively. Evidently, the proposed CFDRN achieved signif-
icant improvements in dysarthric ASR when compared to the
three pre-training approaches. The improvements were probably
achieved because of the decomposition and recombination of
features, which allows more effective feature extraction by the
model.

2) Results on Different Degrees of Dysarthria: Fig. 3 shows
the ASR performance for speakers with different degrees of
dysarthria, that is, speakers with S/M dysarthria, and speakers
with mild dysarthria. The results were obtained from the devel-
opment sets and test sets. The different adaptation approaches
that were used along with the three pre-training approaches were
compared. For speakers with different degrees of dysarthria,
the ASR performance with CFDRN was more stable than
that with the compared methods. In the TORGO dataset, the
improvements in the ASR for S/M dysarthric speakers were
more obvious than those in the ASR for mild dysarthric speak-
ers. In the UASpeech corpus, we observed that some of the
compared approaches degraded the performance of ASR. As
expected, CFDRN was effective in both S/M and mild dysarthria
cases. Overall, the results for speakers with different degrees of
dysarthria demonstrate that the proposed CFDRN is robust to
significant variations in dysarthric speech.
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were obtained from the development sets of TORGO and UASpeech datasets.

D. Ablation Study

The proposed CFDRN comprises three key steps: a) the
hidden speech representation is split into slow and rapid com-
ponents in a specified proportion; b) a slow-varying temporal
processor was designed that adopts FFT to extract stable fea-
tures; and ¢) a GFM is proposed to recombine the stable and
changeable features. Ablation studies were conducted to validate
the effectiveness of each component of the proposed CFDRN.

1) Different o Values: Fig. 4 shows the ASR performance for
different o values, where « is the proportion of the dimensions
of slow and rapid components. o = 1 implies that we only used
the slow-varying temporal processor to adapt the model from
normal to dysarthric speech. The results were obtained from the
development sets of the TORGO and UASpeech datasets. We
can observe that the CFDRN improves ASR performance with
different « values. Dysarthric ASR achieves the best results in
most cases when v = 0.75. This suggests that the slow-varying
temporal features dominate in ASR. The ASR performance
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TABLE II
EFFECT OF FAST FOURIER TRANSFORM ON THE SLOW-VARYING TEMPORAL
PROCESSOR
Pre-training  Network TORGO UASpeech
S/M Mild Test Avg. S/M Mild Test Avg.
Wav2vec 2.0 Attention 35.33 420 24.86 24.03 62.93 15.11 30.95 39.73
Wav2vec 2.0 RNN 32,62 4.12 2255 22.27 59.60 14.23 29.96 37.59
Wav2vec 2.0  FFT  30.65 4.09 21.97 21.00 56.80 12.39 28.26 35.25
HuBERT  Attention 34.52 4.52 25.35 23.62 61.93 13.02 29.98 38.20
HuBERT RNN 3246 398 23.84 22.12 60.74 13.18 29.45 37.66
HuBERT FFT 2978 3.96 21.72 20.40 59.95 13.60 29.28 37.46
Data2vec  Attention 26.14 3.69 19.43 17.98 59.42 13.44 29.02 37.11
Data2vec RNN 2493 388 1886 17.28 58.07 12.27 2826 35.85
Data2vec FFT  24.60 3.47 18.17 16.93 58.15 12.06 28.07 35.79

Bold entities indicate that method achieved the best performance compared to methods
with similar experimental Settings.

TABLE III
EFFECT OF THE GATED FUSION MODULE

Pre-training GFM TORGO UASpeech

S/M Mild Test Avg. S/M Mild Test Avg.
Wav2vec 2.0 w/o 3140 4.01 22.71 2145 60.83 13.80 29.88 38.01
Wav2vec 2.0  w/ 30.65 4.09 21.97 21.00 56.80 12.39 28.26 35.25
HuBERT  w/o 31.53 4.12 23.02 21.57 60.38 13.23 30.44 37.50
HuBERT w/ 2978 3.96 21.72 20.40 59.95 13.60 29.68 37.46
Data2vec ~ w/o 26.25 3.61 19.05 18.02 57.69 11.61 27.63 35.33
Data2vec w/ 2603 3.61 18.93 17.89 58.15 12.06 28.01 35.79

Bold entities indicate that method achieved the best performance compared to methods
with similar experimental Settings.

marginally fluctuates when « is adjusted between zero and one.
This validates the necessity of decomposing the features into
stable and changeable features.

2) Slow-Varying Temporal Processor With the Fast Fourier
Transform: Table II lists the effect of the FFT in the slow-
varying temporal processor. The slow-varying temporal proces-
sor attempts to extract stable features, which change slowly.
Therefore, the slow-varying temporal processor requires the
ability to extract features over a long period. To validate the
use of the FFT, we compared two widely used networks that
satisfy our requirements: attention mechanism and recurrent
neural network (RNN). We can observe that the FFT outper-
forms the other two methods in most cases, although the RNN
achieves competitive performance when compared with the FFT
for data2vec. The ASR for speakers with S/M dysarthria gained
more help from the FFT than from the other approaches. The
table shows that the RNN outperformed the attention mecha-
nism on both datasets under the three unsupervised pre-training
frameworks. Although the RNN exhibits a marginal advantage
on some subsets, it requires more parameters, resulting in slower
inference.

3) Gated Fusion Module: Table III lists the performance of
the CFDRN-based ASR with and without the proposed GFM.
The results show that the proposed GFM improved the results
in almost all cases of high variability (S/M dysarthria) and
achieved competitive performance in cases of lower variability
(mild dysarthria). Thus, the GFM demonstrates the potential for
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voiced consonants when comparing the CFDRN-based ASRs with and without
the GFM. The performance on single-word and multiword utterances are pre-
sented. The average performances of the development and test sets are shown.

application in the speaker-dependent ASR for low-intelligibility
speech.

Fig. 5 shows the relative improvements on vowels, voiced
consonants, and unvoiced consonants, comparing the CFDRN-
based ASRs with and without the GFM. When recognizing
single-word utterances, the improvements on the UASpeech
and TORGO datasets are similar. The ASR performance gains
from the GFM under the wav2vec 2.0 framework. However,
the CFDRN without the GFM achieved marginally better per-
formance than that with the GFM when using the HuBERT
and data2vec pre-training approach. We can observe that when
recognizing multiword utterances, the use of GFM improves the
performance in all cases. From previous research [24], [25], [26],
wav2vec?2 is a generative learning techniques, which is good at
extracting contextual information in speech, whereas HuBERT
and data2vec are discriminative learning techniques, which are
good at extracting discriminative features from speech clusters.
Therefore, one possible reason the GFM decreased ASR per-
formance on single-word utterances is that the HuBERT and
data2vec are more tolerant of speech variability. Further feature
manipulation leads to redundant information. When the amount
of context information increases, the recognition performance
can be improved by GFM.

E. Analysis

The subsequent section presents a further analysis of the CF-
DRN in dysarthric ASR focusing on speech recognition errors
in specific categories of phonemes, thereby providing a basis
for the further improvement of dysarthric speech recognition
technology.

1) Speech Recognition Error Analysis: Fig. 6(a) shows the
relative WERR of the CFDRN-based dysarthric ASR when
compared to the baselines for multiword and single-word recog-
nition. The improvement in the multiword ASR was obviously
greater than that in the single-word ASR. This is probably
because the single-word ASR lacks sufficient contextual infor-
mation, making it challenging to identify distorted phonemes.

There are three types of recognition errors: insertion, deletion,
and substitution errors. Most errors in single-word speech recog-
nition errors are undoubtedly substitution errors. Therefore, for
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under the wav2vec 2.0 pre-training framework. The results are the averages of
the development and test sets.

an in-depth understanding of the CFDRN, we analysed the rela-
tive correction of the three types of errors in multiword dysarthric
ASR, as shown in Fig. 6(b). The figure shows that deletion
and substitution errors are significantly decreased using our
CFDRN with three pre-training approaches, whereas insertion
errors are increased when compared to the baseline. The results
demonstrate that the CFDRN extracts phoneme features more
effectively, including stable features that contain ambiguous
phoneme features and changeable features that contain distin-
guishing details. Insertion errors in dysarthric speech are usually
caused by imprecise articulation and improper breathing [69].
The increased insertion errors could have been caused by the
excessively rich details of the changeable features. These de-
tails included mispronunciation and acoustic noise caused by
the incoordination of respiratory and articulatory organs. That
information was misrecognised as inserted phonemes by our
system.

Fig. 7 shows the results of the three recognition errors in the
multiword dysarthric ASR under the wav2vec 2.0 pre-training
framework. The errors are related to the degrees of dysarthria.
The three recognition errors in speakers with S/M dysarthria are
significantly higher than those in speakers with mild dysarthria.
Substitution errors occurred more frequently than other errors.
All adaptation approaches contribute to reducing deletion errors,
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TABLE IV
SEVEN COMMON HIGH-FREQUENCY RECOGNITION ERRORS OF
COGNITION-INSPIRED FEATURE DECOMPOSITION AND RECOMBINATION
NETWORK-BASED ASR

Rank  Recognition Error  Articulatory Error Type  Freq. (%)
1 16/ — Is/ Backing 1.41
2 Il — Isl Fronting 1.25
3 /m/ — v/ Backing 1.16
4 fal — /a/ Mid-vowel raising 0.94
5 /o1 — fal Monophthongization 0.88
6 Il — /Al Mid-vowel lowering 0.75
7 M — Fronting 0.71

“/x/ — /y/” indicates the ASR misrecognizes sound /x/ as sound /y/.

but not reducing other errors. For mild dysarthria, CFDRN
achieved the lowest insertion and substitution error rates, and
AdaptFormer achieved the lowest deletion error rate. For S/M
dysarthria, the CFDRN achieved the lowest error rates for all
three types of recognition errors. This indicates that the CFDRN
has a stronger ability to extract variations in speech than the other
approaches.

2) Misrecognised Phoneme Analysis: In addition to the sig-
nificant variations in pronunciation of dysarthric speakers, pre-
vious research has shown that they also make highly consistent
articulatory errors [70], which may lead to highly consistent
recognition errors in the ASR. Table IV lists the seven common
high-frequency speech recognition errors in the CFDRN-based
ASR. The frequency was calculated according to the transcrip-
tions and predictions were produced by the models pre-trained
with wav2vec 2.0, HuBERT, or data2vec on both datasets. High-
frequency speech recognition errors reflect the commontypes of
articulatory errors in speakers with dysarthria. The articulatory
error types were classified according to [11], [14], [71]. The table
shows that the most confusing sounds for speech recognition are
101, /f/, /m/, /a/, 01/, /U/, and /U/. Variations in dysarthric speech
are closely associated with deviant pronunciation. Recognition
errors for consonants are mainly of the backing or fronting
error type, in which the articulatory place of the consonant is
incorrect. Recognition errors for vowels primarily occur at the
mid-vowel tongue height during monophthongisation. In partic-
ular, fricative consonants pose a challenge for dysarthric ASR.
One possible reason is that dysarthric speech is usually accom-
panied by undesirable acoustic noise due to improper breathing,
and the noise is similar to the fricative consonants that degrade
ASR performance. Moreover, the recognition of mid-vowels is
difficult in dysarthric ASR because the poor flexibility of the
tongue of the speaker leads to deviations when pronouncing
significantly high or low vowels. This study suggests that more
attention should be focused on correcting these consonants and
vowels to improve dysarthric ASR.

V. DISCUSSION

In previous sections, we introduced the proposed method and
analysed the performance in dysarthric speech recognition. This
section discusses the findings, strengths, and limitations of this
study.
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Dysarthric ASR is challenged by the high variability of
disordered speech and limited amount of available dysarthric
speech data. Human speech processing mechanisms provide
excellent references to address these problems. Speech features
are decomposed and processed separately using the left and
right hemispheres of the brain [36], [37]. The robustness of
human speech processing capabilities partially results from the
suitable decomposition and organic recombination of features.
Inspired by this, we proposed the CFDRN. For the CFDRN,
we designed slow- and rapid-varying temporal processors for
feature decomposition. We proposed a GFM for feature re-
combination. Previous experiments and analyses have validated
the effectiveness of the proposed CFDRN for dysarthric ASR
tasks. To further understand the CFDRN, we explored possible
explanations for some of the results observed in our experiments.

A. Functions of Slow-Varying and Rapid-Varying Temporal
Processors

The slow- and rapid-varying temporal processors were de-
signed to decompose features into stable and changeable fea-
tures. Stable features describe the common parts where speakers
pronounce the same phonemes, which are stable features that
play a decisive role in ASR. Changeable features supplement
the ASR process, which are indecisive.

Fig. 8 shows the average values of the first-order difference
and their spectrum in the extracted features. The first-order
difference reflects the rate of change between two adjacent
frames. A lower value indicates a slower change. We visu-
alised the outputs of the processors in the first encoder layers.
The figure shows that the output of the slow-varying temporal
processor has a smaller first-order difference. This indicates
that the slow-varying temporal processor tends to extract stable
features, whereas the rapid-varying temporal processor tends to
extract changeable features, similar to human speech processing.
The spectrum of the first-order difference reflects the frequency
component of the change between two adjacent frames. The
dominant peak of the slow-varying component is about 2.5 Hz,
and that of the rapid-varying component is about 8.25 Hz.
These two components demonstrate distinguishable properties
and showed similarities to speech processing in the brain. In
summary, the visualization of the first-order difference shows
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Fig. 9. Comparison of the ASR performance of the CFDRN-based ASR
that uses either a rapid-varying temporal processor or a slow-varying temporal
processor. The results represent the averages of the development and test sets
for the TORGO and UASpeech datasets.

that the proposed CFDRN can simulate human speech process-
ing to a certain extent.

Previous studies determined that the right side of the human
brain plays a dominant role in phonological cognition, whereas
the left side is a helper. Experimental demonstrations have shown
only marginal degradation in the speech recognition accuracy
in people who were paralysed on either the left or right side
of the brain [72]. Fig. 9 shows the ASR performance of a
CFDRN-based ASR that uses either the slow- or rapid-varying
temporal processor. The ASR performance was better when only
the slow-varying temporal processor was used than when only
the rapid-varying temporal processor was used. Moreover, the
performance improved even when only one processor was used.
These findings are consistent with those on speech cognition
processing in the human brain. The extracted stable features
play a decisive role in the ASR, and the extracted changeable
features supplement the ASR.

B. The Strengths and Limitations of the CFDRN

This article proposed the novel CFDRN, which applies hu-
man speech processing mechanisms to machine speech recog-
nition. In contrast to previous studies on disordered ASR, the
exploration in this study was from the perspective of feature
decomposition and recombination to solve the high variability
problem. According to the results and analysis in Sections [V-D
and IV-E, the strengths of the CFDRN are as follows.

1) The CFDRN, which is inspired from the human speech
cognition process, extracts detailed variations of speech
more effectively and efficiently by first decomposing fea-
tures into stable and changeable features, and then organ-
ically recombining them. It is robust to dysarthric speech
with varying degrees of intelligibility.

2) The CFDRN achieves significant improvements in both
dysarthric ASR of multiword and single-word utterances.

3) The CFDRN extracts more distinguishing features for
ASR and significantly reduces deletion and substitution
eITOrS.

The limitation of the CFDRN is that it does not consider

the effect of acoustic noise due to improper breathing, leading
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to increased insertion errors in certain cases as described in
Section IV-E.

VI. CONCLUSION AND FUTURE WORK

This study aimed to develop speaker-independent dysarthric
speech recognition. To alleviate the data scarcity problem, we
utilised unsupervised pre-training techniques to initialise the
model and adapt it from normal to dysarthric speech. The pro-
posed CFDRN could address variabilities in disordered speech.
The CFDRN was added to each layer of the model for ef-
fective and efficient adaptation. The features in the CFDRN
were decomposed into stable and changeable features, processed
separately, and recombined selectively, similar to human speech
cognition. We designed the slow- and rapid-varying temporal
processors to handle the stable and changeable features. A
GFM was developed to recombine these features. Experiments
were conducted using the widely used TORGO and UASpeech
dysarthria datasets. The effectiveness of the proposed method
was validated using the wav2vec 2.0, HuBERT, and data2vec
unsupervised pre-training techniques. The advantages and lim-
itations of the proposed methods were analysed and discussed
in detail. We determined that confusion in phoneme recognition
often occurs between phonemes with close articulatory places
because of the difficulty experienced by disordered speakers in
accurately controlling them. According to the findings, in the
future, this study suggests enhancing the method by adding a
carefully designed language model for dysarthric speakers to
avoid the effect of acoustic noise.
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