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A B S T R A C T

The success of automatic speech recognition (ASR) benefits a great number of healthy people, but not people
with disorders. The speech disordered may truly need support from technology, while they actually gain little.
The difficulties of disordered ASR arise from the limited availability of data and the abnormal nature of
speech, e.g, unclear, unstable, and incorrect pronunciations. To realize the ASR of disordered speech, this study
addresses the problems of disordered speech in two respects, low resources, and articulatory abnormality. In
order to solve the problem of low resources, this study proposes staged knowledge distillation (KD), which
provides different references to the student models according to their mastery of knowledge, so as to avoid
feature overfitting. To tackle the articulatory abnormalities in dysarthria, we propose an intended phonological
perception method (IPPM) by applying the motor theory of speech perception to ASR, in which pieces of
intended phonological features are estimated and provided to ASR. And further, we solve the challenges of
disordered ASR by combining the staged KD and the IPPM. TORGO database and UASEECH corpus are two
commonly used datasets of dysarthria which is the main cause of speech disorders. Experiments on the two
datasets validated the effectiveness of the proposed methods. Compared with the baseline, the proposed method
achieves 35.14%∼38.12% relative phoneme error rate reductions (PERRs) for speakers with varying degrees
of dysarthria on the TORGO database and relative 8.17%∼13.00% PERRs on the UASPEECH corpus. The
experiments demonstrated that addressing disordered speech from both low resources and speech abnormality
is an effective way to solve the problems, and the proposed methods significantly improved the performance
of ASR for disordered speech.
1. Introduction

The speech signal, the carrier of information transmission in human
communication, is produced by the axrticulatory system and perceived
by the auditory system. Therefore, research on speech signal processing
has been focused on the mechanism of human speech production and
auditory processing. Speech disorder arises from dysfunctions of motor
programming at the higher level or motor execution at the lower level.
Auditory comprehension of speech is difficult for listeners because
of their lack of exposure to such speech signals of irregularity and
distortion. Therefore, the task of ASR for speakers with speech disorder
requires special procedures to predict speakers’ intension by expanding
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available phonetic information to reconstruct language’s phonology
and then linguistic messages.

Automatic speech recognition (ASR) translates speech signals to cor-
responding text or commands. Studies on conventional speech recog-
nition systems have focused on the acoustic model (Abdel-Hamid
et al., 2012; Deliyski, 1993; Juang and Rabiner, 1991; Maas et al.,
2013) related to the articulation process and the language model
(Gandhe and Rastrow, 2020; Kuhn and De Mori, 1990; Steinbiss and
Klakow, 2004) in relation to the text sequence. In recent years, with the
help of high-performance deep learning approaches, the acoustic model
and the language model are integrated into a single neural network
called ‘‘end-to-end (E2E) ASR model’’, which contributes significantly
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improvement s to ASR (Amodei et al., 2016; Chan et al., 2016; Dong
et al., 2018; Qin et al., 2019; Shan et al., 2019; Zhang et al., 2020).

Unfortunately, the E2E ASR model is heavily dependent on the scale
of data, so the recognition of some low-resource speech data is difficult,
e.g., minor language speech, dialect speech, and disordered speech. In
previous studies, many methods have been used to improve the perfor-
mance of low-resource ASR (Lin et al., 2020; Meng et al., 2019; Shor
et al., 2019; Takashima et al., 2019). Among them, teacher-student
learning (TS) achieved competitive results on low-resource data be-
cause it makes full use of a large amount of normal speech, transferring
knowledge from normal speech to disordered speech since the feature
overfitting. However, it omits the problem that blindly learning from
the teacher model for normal speech is not conducive to knowledge
transfer to the student model for disordered speech. The speech features
can be decomposed into crucial features and auxiliary features, whether
the former ones describe the common parts between speakers pro-
nouncing the same phone, while the auxiliary ones describe the details
of the speech such as the clarity and the style. The disordered speech
are usually lost and/or replaced the auxiliary features. If we equally
transferred both features from the teacher model to the student model,
the student model would not perform well for the disordered speech
recognition. This study enhanced the TS to solve the low-resource
problem of disordered ASR, aiming to learn crucial features from the
teacher model and avoid the model overfitting to auxiliary features.

Speech disorders affect a speaker’s ability to produce natural
sounds, as seen in stuttering, apraxia of speech, and dysarthria. The
disorders reduce the intelligibility of speech to varying degrees. For
example, dysarthria—a specific disorder, resulting from weakness or
paralysis of speech muscles caused by damages to the motor system
(Fritsch and Magimai-Doss, 2021; Narendra and Alku, 2018), may
cause the speech unclear, unstable, and mixed with incorrect pronunci-
ation. This paper introduces a dysarthric ASR task as a benchmark for
measuring the effectiveness of the proposed methods for low resources
and abnormal articulation.

To illustrate the problems of dysarthria, we refer a diagram modi-
fied from the Speech Chain (Denes et al., 1993) as shown in Fig. 1. The
figure includes two loops; one is between the speaker and a listener, and
another is between the speech production and perception in the speaker
side. Speech production is an extremely complex process of motor
coordination involved in the brain (Asaei et al., 2017). In the process,
speaker’s intention is translated into linguistic representation. Then, the
phonological and phonetic encoding system extract the phonemes, into-
nation and duration of the language from the representation. Thus the
speech planning center in the brain programs articulatory movements
according to the linguistic representation. The sounds are produced
by motor commands to drive the speech organs—the lungs, larynx,
tongue, lips, etc. Any injury in the loop between speech production and
perception may cause certain speech disorders. Dysarthria occurs when
there is an injury in the motor planning or execution (Xian et al., 2017),
as shown in the figure by a cross marker.

Speech perception is the process by which the spoken language is
heard, interpreted, and understood. In this process, listeners perceive
the speech sound by extracting acoustic cues and phonetic information
to infer the articulatory movements (McGurk and MacDonald, 1976).
The combination of these cues and this information is often reformed
as abstract representations of phonemes and applied to speech recogni-
tion (Heba et al., 2019; Lippmann, 1996). Automatic speech attribute
transcription (ASAT) is a system for extracting speech perception infor-
mation. It detects articulatory attributes (e.g., the place and manner of
articulation) from speech signals and has the potential to assist disease
monitoring (Connaghan et al., 2019).

The motor theory of speech perception is a thesis in psychology
accounting the relationship between speech production and perception
(Galantucci et al., 2006; Liberman and Mattingly, 1985; Liberman and
Mattingly, 1989; Liberman and Whalen, 2000; McGurk and MacDon-
ald, 1976). According to the motor theory of speech perception, speech
2

Fig. 1. Speech Chain of dysarthria (production-perception relationship modified from
‘‘The Speech Chain’’ (Denes et al., 1993)).

production and perception are closely related because they share the
same speech representation—articulatory gestures. The articulatory
gestures are dynamically features composed of a group of abstract
and distinctive articulatory features. Normal pronunciation can be fully
described by the articulatory features, but in speakers with speech
disorders, some of the articulatory features may be lost or replaced.
The motor theory suggests that when a listener encounters deformed
speech, they may rely heavily on the speaker’s articulatory gestures to
comprehend the intended message. This phenomenon can be observed
in everyday situations. For instance, when a speaker utters during
eating, the speech can be perceived correctly, even if it is disturbed by
the food in the mouth, because most of the listeners have such experi-
ences. Dysarthria is a specific type of speech disorder that falls under
the category of deformed speech. In perception of disordered speech,
humans tend to infer the intended phonological features (IPFs) from
partial articulatory features, ignoring the lost or replaced articulatory
features. This process inspires us to consider perceptual information to
solve abnormal problems when recognizing speech. ‘‘How can machines
estimate IPFs as humans?’’ is the key to applying the motor theory of
speech perception to machine speech recognition. The IPFs describe
the intended pronunciation of a desired but mispronounced sound.
Previous studies showed that the lost or replaced articulatory features
tend to be consistent within a speaker, but still vary widely across
speakers with speech disorders (Mengistu and Rudzicz, 2011a). Since
articulatory movements are coherent, it is possible to use the majority
of articulatory features (ignores lost/replaced) to estimate the IPFs of
dysarthric speakers.

This study decomposes the challenge of disordered ASR into two
sub-problems: a low-resource problem and an abnormality problem
because such a speech sound is unclear and unstable with some in-
correct pronunciation. In our previous studies (Lin et al., 2020; Lin
et al., 2020), we conducted a preliminary study on building a well-
performed ASR and ASAT system for dysarthric speech. To solve the
low-resource problem of dysarthric ASR, the TS method was enhanced
by staged training on dysarthric ASR, which is verified to be effective
in avoiding overfitting. Besides, the method is successfully applied to
an E2E dysarthric ASAT system. However, our previous studies did not
analyze the influence of the stage boundary for dysarthric ASR in-depth
and the experimental verification was limited. In addition, we did not
consider the speech abnormality problem, which is the primary cause
of degradation in dysarthric ASR.

Therefore, to demonstrate the effectiveness of solving the disordered
ASR by addressing the two sub-problems, we extended our previous
studies with detailed analyses, more experiments and a solution for
speech abnormality problem. We first deal with the low-resource prob-
lem from the aspect of model training. A model-refactoring method
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(Lin et al., 2020) is proposed to use the limited data more effectively.
Based on it, a staged knowledge distillation (KD) is proposed to transfer
knowledge from an informed teacher model to the dysarthric ASR
model (Lin et al., 2020). Then, we further solve the abnormal problem
from the perspective of human speech production and perception. We
propose an intended phonological perception method (IPPM), in which
the IPFs are estimated by reference to the crucial articulatory features
(typical features) through an intended phonological perception loss
function (IPP-loss). The articulatory features are extracted from an E2E
ASAT system. The IPFs of dysarthric speech are used to correct the
ambiguous decisions of the phonemes in ASR. Finally, the proposed
methods are combined to solve the problems of disordered ASR. Ex-
periments conducted on two popular datasets of dysarthria show that
the proposed methods achieve a significant improvement over existing
methods.

The remainder of this paper is organized as follows: Section 2
reviews the related work of disordered speech. Section 3 introduces our
proposed method. Section 4 describes the experimental evaluations and
analysis. Section 5 makes further discussions. Conclusions and plans for
future works are presented in Section 6.

2. Related work

This section introduces related work in two areas: end-to-end ASR
and dysarthric speech recognition.

2.1. End-to-end speech recognition

A conventional ASR system includes three independent components:
an acoustic model, language model and lexicon (Jurafsky, 2000). As
a consequence of the development of applications of neural networks,
end-to-end approaches to ASR have attracted extensive attention. This
approach directly learns the mapping between acoustic features and
phonemes (or words) using a single neural network framework, with-
out a language model or lexicon. Graves et al. (2006) proposed con-
nectionist temporal classification (CTC), which laid the foundation
for end-to-end speech recognition. Later, Graves and Jaitly (2014)
proposed the RNN transducer, which uses a deep bidirectional long
short-term memory (LSTM) network with CTC. Ueno et al. (2018)
introduced an attention mechanism into ASR and obtained competitive
results. The state-of-the-art approaches are based on self-attention,
among which transformer-based ASR models are popular, as exempli-
fied by Miao et al. (2020), Salazar et al. (2019), Shetty and Sagaya
Mary N.J. (2020), Winata et al. (2020) and Yeh et al. (2019).

2.2. Disordered speech recognition

Related studies on disordered speech recognition focus on speech
features and acoustic modeling. Some studies added disordered speak-
ers features to the acoustic features. Deng et al. (2009) used the acoustic
signal, the surface EMG (sEMG) signals, and their fusion by considering
the articulation of the speakers. In studies on ASR for dysarthria, there
were two categories of methods. One is exploring the improvement of
ASR at the features level, and another category is exploring the way
to fusion acoustic and articulatory features. Xiong et al. (2019) applied
speech tempo transformations to reduce mismatches between normal
and dysarthric speech. Illa et al. (2018) proposed new articulatory fea-
tures to capture information from dysarthric speech. The other studies
capture the variations of dysarthric speakers’ pronunciation and learn
the relationships between dysarthric speech features and phonemes
or words (Bhat et al., 2018; Hasegawa-Johnson et al., 2006; Kim
et al., Kim et al.; Kim et al., 2013). In fusion acoustic and articulatory
features, a straightforward approach to fuse the acoustic features and
articulatory features is feature concatenation (FC) (Yue et al., 2022).
Another popular approach for adding distinguishing articulatory fea-
tures is to use multitask learning (MTL) (Bayerl et al., 2022; Heba
3

et al., 2019).
Table 1
English consonant list with the articulatory place attributes.

Articulatory place Phonemes

Labial p, b, m, f, v
Dental T, D

Alveolar t, d, n, s, z, l
Post-alveolar Ù, Ã, S, Z, r
Palatal j
Velar k, g, N, w
Glottal h

However, at the feature level, previous studies did not consider
the case in which a few articulatory features are lost or replaced in
dysarthric speech. One focus of this study is dealing with this issue. Be-
sides, these approaches cannot capture perceptual differences between
the predicted phonemes and the ground-truth phonemes because they
are optimized only by the cross-entropy loss function. As a result, the
phonological and articulatory features that the ASR system perceives
are inconsistent. The improvement of the performance of disordered
speech recognition is limited.

3. Disordered ASR considering low-resource and abnormal artic-
ulation

In this section, we first introduce the automatic speech attribute
transcription (ASAT) system. Then, we describe the proposed two
solutions to the low resources and abnormality challenges in disor-
dered ASR, respectively. Finally, we introduce the final solutions for
disordered ASR.

3.1. Automatic speech attribute transcription

Automatic speech attribute transcription (ASAT) is a system for ex-
tracting speech perception information. It detects articulatory attributes
from speech signals and has the potential to assist disease monitor-
ing (Connaghan et al., 2019; Lippmann, 1996). Articulatory attributes
describe the process of human speech production according to the
deformation or movement of the lips, tongue, and other speech organs.
A consonant can be determined by the attributes of three dimensions:
the place and manner of articulation, and distinction between the
voiced or voiceless. According to the articulatory place, consonants are
divided into the labial, dental, alveolar, post-alveolar, palatal, velar,
and glottal. According to the manner of articulation, consonants are
divided into the plosives, affricates, nasals, fricatives, approximants,
and laterals. Vowels can be determined by three positional attributes:
tongue height, tongue backness, and lip rounding. Tongue height de-
scribes the tongue’s vertical positions, and tongue backness describes
its horizontal positions.

In the revised motor theory, speech perception is related to ar-
ticulatory gestures but not absolute (or typical) articulatory. In this
study, we trained an articulatory place detection system following Lin
et al. (2020) to provide hidden features of articulatory movement for
ASR. It is because the manner features of articulation are easier to
obtain from the speech features than the articulatory place features.
Therefore, the accurate extraction of the articulatory place features
requires additional attribute annotations in the ASAT. The articulatory
features obtained from the hidden layer output of the ASAT contain the
majority of the articulatory features (not lost/replaced), mixed with the
information of the correct place and manner of articulation, irrespective
of intended phonological features (IPFs). They have the potential to
describe the underlying articulatory gestures since the points on the
articulatory gesture can be mapped into a distribution around the typi-
cal articulatory place of the phoneme. This paper classifies consonants
by the articulatory place using the mapping rules in Lin et al. (2020),
which are shown in Table 1. The place attribute of vowels is not taken
into account in this paper because vowels have more tolerance for

recognition than consonants.
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3.2. The solution on low-resource: Staged knowledge distillation

The end-to-end based dysarthric ASR suffered from limited speech
data. Knowledge distillation (KD)/Teacher-student learning (TS) is a
popular transfer learning method, which has been shown to be effective
for adaptation (Li et al., 2017; Meng et al., 2018; Mošner et al., Meng
et al.). It makes the student model (dysarthric ASR) learn from a large
teacher model (general ASR) and the transcriptions. The traditional
KD approaches are not suitable for dysarthric speech due to the low
resources of dysarthric speech and its heavy deviation from normal
speech. They learn both crucial features and auxiliary features of nor-
mal speech equally from the teacher model, which may lead the student
model to overfit in the auxiliary features and harms the performance of
transferring. This study proposed a staged KD, aiming to learn crucial
features from the teacher model and avoid learning auxiliary features
since they are usually lost and/or replaced in disordered speech, and
overfitting them harms the transfer performance.

Given input speech features 𝐱 = {x1,…x𝐿} with length of 𝐿, and
the corresponding transcriptions 𝐲 = {y1,… , y𝑁} with length of 𝑁 ,
the teacher network is trained by optimizing the loss between the tran-
scriptions 𝐲 and the output softmax of the teacher 𝐨𝑡 = {o𝑡1,… , o𝑡𝑁} ∈
R𝑁×𝐷. 𝐷 is the number of target classes. In conditional TS, the student
network is trained to learn from selected labels, that is made up of
the transcriptions (hard labels) 𝐲, and the outputs softmax of the
teacher network (soft labels) 𝐨𝑡. The loss function is defined between
the selected labels and the outputs softmax of the student network
(predicted label) 𝐨𝑠 = {o𝑠1,… , o𝑠𝑁} o𝑠𝑖 ∈ R𝑁×𝐷. However, this approach
is ineffective when the resources of data are limited as in dysarthric
speech. To make a full use of limited data resources, a staged training
strategy is adopted. The latest study in Takashima et al. (2020) shows
staged training (first adapted to multiple dysarthric speakers, and then
to the target speaker) is effective for dysarthric speech. Different from
that, the student model in the proposed staged KD is first adapted to
the mixture of multiple dysarthric and healthy speakers, and then the
adapted model is further adapted for the target dysarthric speakers.

The staged KD has two learning stages. The selected labels are
defined differently at different stages. In the first stage, the selected
labels are made up of the hard labels 𝐲 and soft labels 𝐨𝑡. In the second
stage, the selected labels are made up of the hard labels 𝐲 and predicted
labels 𝐨𝑠. The specific definition is as follows:

ỹ𝑖(o𝑖) =

⎧

⎪

⎨

⎪

⎩

o𝑡∕𝑠𝑖 , arg max
𝑗∈{1,2,…,𝐷}

o𝑖,𝑗 = arg max
𝑘∈{1,2,…,𝐷}

y𝑖,𝑘

y𝑖, otherwise
(1)

where o𝑡∕𝑠𝑖 represents the 𝑖th output softmax of the teacher network or
tudent network. That is to say, the student at first learns knowledge
rom both the teacher and ground truth and then focuses on the more
ifficult aspects when it has learned most of the knowledge.

A boundary value 𝜆 is introduced to divide the two stages. The
training process enters the second stage when the prediction accuracy
of the student network is higher than 𝜆. In brief, the student network
is trained to optimize the following loss function:

𝑠𝑡𝑎𝑔𝑒𝑑_𝐾𝐷 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

− 1
𝑁

𝑁
∑

𝑖=1

𝐷
∑

𝑗=1
ỹ𝑖,𝑗 (o𝑡𝑖) log o

𝑠
𝑖 , acc ≤ 𝜆

− 1
𝑁

𝑁
∑

𝑖=1

𝐷
∑

𝑗=1
ỹ𝑖,𝑗 (o𝑠𝑖 ) log o

𝑠
𝑖 , otherwise,

(2)

acc𝑖 =

⎧

⎪

⎨

⎪

⎩

1, arg max
𝑗∈{1,2,…,𝐷}

o𝑠𝑖,𝑗 = arg max
𝑘∈{1,2,…,𝐷}

y𝑖,𝑘

0, otherwise,
(3)

acc = 1
𝑁
∑

acc𝑖, (4)
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𝑁 𝑖=1
here 𝑠𝑡𝑎𝑔𝑒𝑑_𝐾𝐷 is the loss function for the proposed staged KD. acc𝑖
indicates whether the model accurately predicts the 𝑖th output, and
acc is the overall accuracy of prediction. 𝜆 is the tunable tradeoff
parameter.

3.3. The solution on abnormal articulation: Intended phonological percep-
tion method

According to the motor theory of speech perception (Liberman
and Mattingly, 1985), listeners would perceive pronunciation heav-
ily reference with articulatory gestures when the sound deteriorates.
Indeed, dysarthric speech is deteriorated by missing or replacing a
few articulatory features in articulatory gestures. In the perception
of normal speech, humans can easily identify phonological features
from articulatory gestures, while when it comes to disordered speech,
humans may infer the intended phonological features (IPFs) by relying
on the majority of typical articulatory features, provided that there is
consistency between the perceptual features and articulatory features.
The coordination of movements suggests the feasibility of inferring the
IPFs from the predominant accurate articulatory features.

In terms of this notion, we propose the intended phonological
perception method (IPPM), which consists of two subsystems that aim
to learn both articulatory and auditory information from speech sounds.
These subsystems comprise a number of layers and contain various
levels of articulatory and auditory information in different layers. Our
objective was to identify the layers in the two subsystems which
have the highest relation between the articulation and auditory, and
optimize the ASR learning process through their interactions. The IPPM
estimating IPFs through minimizing the difference in the perceptual
phonological features and articulatory features. The phonological per-
ceptual features are mapped to articulatory features in an optimized
measure, thereby allowing for the inference of IPFs. The two features
are extracted from the decoder of the ASR and ASAT, respectively. The
difference is defined by an IPP loss. The IPFs are incorporated into ASR
to correct the ambiguous decisions of the phonemes by optimizing the
joint loss functions. Therefore, IPFs refer to the phonetic characteristics
that speakers aim to produce based on the category of phonemes and
considering the majority of articulatory features. Fig. 2 shows the
schematic diagram of the IPPM.

Given input speech features 𝐱 = {x1,…x𝐿}, with length 𝐿, corre-
sponding phoneme sequences 𝐲𝐴𝑆𝑅 = {y𝐴𝑆𝑅1 ,…y𝐴𝑆𝑅𝑁 }, with length 𝑁 ,
and corresponding articulatory place sequences 𝐲𝐴𝑆𝐴𝑇 = {y𝐴𝑆𝐴𝑇1 ,…
𝐴𝑆𝐴𝑇
𝑁 }, with length 𝑁 , the predicted phoneme sequences 𝐲̃𝐴𝑆𝑅 and
redicted articulatory place sequences 𝐲̃𝐴𝑆𝐴𝑇 can be obtained from an
SR model and ASAT model, respectively. The phonological features
phono
𝑖 and articulatory features 𝑇 arti

𝑖 are extracted from the 𝑖th layer
ecoder output of a training ASR system and a trained ASAT system,
espectively. Where 𝑇 phono

𝑖 and 𝑇 arti
𝑖 has the same shape of 𝐵𝑖 × 𝑁𝑖 ×

𝑖, and 𝐵𝑖, and 𝐷𝑖 denote the number of sentences per batch and
he dimension of features, respectively. Features are from the decoder
ecause the layers in the decoder contain abstract information about
he mapping between speech features and the corresponding phoneme
r articulatory place, which the encoder does not.

To estimate the IPFs, the IPP-loss gives the mean square error
MSE) between 𝑇 arti

𝑖 and 𝑇 phono
𝑖 . The use of MSE rather than other loss

unctions such as cross-entropy loss, is the fact that the outputs of the
ecoder layers are likelihood probabilities. The IPP-loss function can
e written as

𝐼𝑃𝑃 = (𝐵𝑖𝑁𝑖𝐷𝑖)
−1
‖𝑇 phono

𝑖 − 𝑇 arti
𝑖 ‖

2
F. (5)

We compute the IPP-loss between decoders because the decoder
f the Transformer has the potential to extract features related to the
honemes and articulatory information. Encoders tend to extract shal-
ow generic speech representations because it does not obtain accurate
honeme or articulation information.
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Fig. 2. Schematic diagram of the IPPM with the case where 𝑖 = 2.
To incorporate the IPFs into ASR, the model is trained to jointly
ptimize two loss functions: cross-entropy loss 𝐶𝐸 and IPP-loss 𝐼𝑃𝑃 .
he total loss function is defined as

𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐸 + 𝛽𝐼𝑃𝑃 , (6)

here 𝛽 is a tunable parameter, representing the degree of reliance
f ASR on IPFs. Once the training process is completed, the lower i
ayers of the ASR decoder acquire the ability to estimate IPFs directly
rom the speech input. All the experiments in this study were conducted
ith 𝛽 = 1. We emphasize that we paid less attention for tuning the 𝛽,

ince the major purpose of this study is to find out an effective way to
stimate IPFs of dysarthric speech and take them into account in ASR.

.4. Final system: Combining the staged KD and the IPPM

This study solves the challenge of disordered ASR by dealing with
wo sub-problem: low resources and abnormal articulation. For the
ow resources problem, we propose the staged KD to more effectively
se the limited resources. For the abnormal articulation problem, we
ropose the IPPM, which estimates IPFs and uses the features to correct
mbiguous phonemes. Based on them, we develop the final system by
ombining the two solutions. The performance of disordered ASR is
urther improved. Specifically, we joint optimizing the loss function in
he staged KD and the IPPM. The final loss function can be expressed
s:

𝑓𝑖𝑛𝑎𝑙 = 𝑠𝑡𝑎𝑔𝑒𝑑_𝐾𝐷 + 𝛽𝐼𝑃𝑃 , (7)

here 𝛽 is a tunable parameter, which is set to 1 same as in Section 3.3.

. Experiments and results

.1. Datasets

A series of experiments were conducted on two open-source corpus
f speakers with dysarthria to evaluate the effectiveness of the pro-
osed method: the TORGO database1 and the UASpeech.2 In addition,

1 http://ifp-08.ifp.uiuc.edu/protected/UASPEECH/.
2 https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html.
5

another 500-h recording of normal speech from the Librispeech corpus
(Panayotov et al., 2015) was used for pretraining in the E2E framework
because of the limited amount of dysarthric speech data.

TORGO The TORGO database (Rudzicz et al., 2012) consists of data
from 8 dysarthric speakers with varying degrees of cerebral palsy (CP)
or amyotrophic lateral sclerosis (ALS), and 7 healthy control speakers.
There are three levels of speech disorders: severe, moderate, and mild.
Speech files in the dataset are recorded by a microphone array and a
head-worn microphone with a 16 kHz sampling rate. The recordings
last 20.4 h (8.7 h for dysarthric and 11.7 h for typical control speech)
after applying standard three-way speed perturbation with factors of
0.9, 1.0, and 1.1 (Ko et al., 2015).

UASPEECH The UASPEECH corpus consists of data from 15 dysarthric
speakers with CP and 13 healthy control speakers. Speakers were
classifiered in four severity levels, namely severe, severe to moderate,
moderate and mild (Kim et al., 2008). Speech files in the dataset are
recorded by 7 microphones with a 16 kHz sampling rate. The original
recording contains long silent segments at the beginning and end of
the audio. After cleaning up the data as in Xiong et al. (2018), the
recordings last 78.5 h, where 47.8 h for dysarthric speech and 30.7 h
for typical control speech.

4.2. Experimental setup

All experiments were conducted using the Kaldi speech recognition
toolkit (Povey et al., 2011) and the open-source Transformer-based ma-
chine translation model in tensor2tensor.3 Due to the limited training
data, all models for ASR or ASAT are pre-trained with 500-h labeled
speech in the Librispeech corpus. The E2E baseline is the model fine-
tuned with the target datasets. The details of the general settings for
all models in the experiments are as follows.

Banks of log Mel-filterbank energy features were used as input
speech features. They were computed with a sliding window of 25 ms
wide, shifted by 10 ms each time step. The log Mel-filterbank energy
features were stacked by 40 dimensional static filterbank features, and
the delta- and double-delta filterbank features. After computing the

3 https://github.com/tensorflow/tensor2tensor.

http://ifp-08.ifp.uiuc.edu/protected/UASPEECH/
https://www.cs.toronto.edu/~complingweb/data/TORGO/torgo.html
https://github.com/tensorflow/tensor2tensor
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Table 2
Comparison of dysarthric speech recognition performance (PER%) of different methods on the TORGO database and the UASPEECH corpus. ‘S/M’ indicates speakers wore severe
or moderate degree of dysarthria.

Framework Method Articulatory features TORGO UASPEECH

S/M Mild Avg. S/M Mild Avg.

Conventional GMM-HMM w/o 87.01 77.69 84.45 99.21 67.70 80.90
DNN-HMM w/o 80.22 72.96 77.84 90.26 55.40 73.52

E2E

E2E baseline w/o 43.57 17.89 33.08 56.94 45.04 52.65
Model-ref. (Lin et al., 2020) w/o 33.11 12.47 24.69 68.47 49.24 61.53
Conditional TS (Meng et al., 2019) w/o 29.67 9.83 21.57 57.16 44.06 52.43
Staged KD (Lin et al., 2020) (ours) w/o 28.41 9.05 20.51 56.58 43.60 51.90

FC (Yue et al., 2022) w/ 30.51 10.55 22.36 56.56 42.86 51.62
MTL (Bayerl et al., 2022) w/ 30.86 9.54 22.15 57.23 44.48 52.63
IPPM (ours) w/ 28.87 9.37 20.91 52.98 39.06 47.96

Final system Staged KD + IPPM w/ 28.26 9.17 20.47 52.29 37.93 47.11
t
l
c
i
i
f

normalized mean and variance for each speaker, the three left frames
were spliced with the current frame. In this case, the input speech
features had a dimension of 480.

The Transformer models for ASR or ASAT had an encoder with
six layers and a decoder with six layers. The number of heads in the
multihead attention layers was set to 8. All sublayers in the model,
and the input/output embedding layers, had a dimension of 512. In
ASR, the vocabulary set contained 39 phonemes according to the CMU
pronouncing dictionary (Weide, 1998). In ASAT, the vocabulary set
contained the articulatory places, mapped from the 39 phonemes.

Early-stopping monitors training steps by the performance of the
model on the held-out validation set. However, it is not an efficient
for dysarthric ASR. It is because the speech sounds vary greatly for
each speaker even if the type and degree of the speech diseases are
the same, and applying early stopping only on the data of several
speakers benefits those speakers, but their speech may be quite dif-
ferent from others. In dysarthric ASR, a common approach is to set
a fixed number of iteration training steps (Xiong et al., 2018; Xiong
et al., 2020; Huang et al., 2022). In this study, we set 60 epochs for the
TORGO database and 20 epochs for the UASPEECH corpus according
to the model convergence. The training model was saved every 200
steps, and the parameters of the last 20 saved models were averaged to
avoid overfitting. The division of training set and test set for the TORGO
database and the UASPEECH corpus are the same as in Lin et al. (2020)
and in Xiong et al. (2018), respectively.

When training, we set the max length of the minibatch as 16 000
frames on the TORGO database and 10 000 frames on the UASPEECH
corpus. All the models were optimized by the Adam optimizer with a
warm-up learning rate (Vaswani et al., 2017). The maximum learning
rate was set to 1 on the TORGO database and 0.1 on the UASPEECH
corpus. When evaluating, the beam search algorithm, with a beam size
of 20, was used for decoding the ASR system. Any ASAT component
is not required. All the models in our experiments have the same
schematic diagram of the evaluation stage.

4.3. Results

Table 2 shows the phoneme error rate (PER%) of ASR for speak-
ers with different degrees of dysarthria achieved by different meth-
ods on the TORGO database and the UASPEECH corpus. ‘S/M’ in-
dicates speakers wore severe or moderate degree of dysarthria. The
conventional-based ASR methods are being compared. Besides, we
applied the feature concatenate (FC) (Yue et al., 2022) and multi-task
learning (MTL) (Bayerl et al., 2022) on the Transformer for comparison
on E2E framework. All of these methods, including IPPM, involve the
issue of deciding which layer to use for feature fusion. We conducted
experiments and presented the best results for each method in Table 2.

From Table 2, E2E models performed significantly better than the
6

conventional methods. The proposed staged knowledge distillation t
Fig. 3. Visualizing the relative improvement of the proposed methods on the TORGO
dataset compared with the baseline. (a) shows the results of the staged KD with different
𝜆 values. (b) shows the results of the IPPM that computes IPP-loss on different layers
of the decoder.

(KD) and intended phonological perception method (IPPM) showed
competitive performances compared to other methods on the both
datasets. The staged KD is more effective than conditional TS. On
the TORGO database, compared with the baseline, the IPPM achieved
33.74% relative phoneme error rate reduction (PERR) on speakers with
severe or moderate degree dysarthria and achieved 47.62% relative
PERR on speakers with mild degree dysarthria. On the UASPEECH
corpus, compared with the baseline, the IPPM achieved 6.95% rel-
ative PERR on speakers with severe or moderate degree dysarthria
and achieved 13.27% relative PERR on speakers with mild degree
dysarthria. The performance improvement of IPPM for dysarthric ASR
is more obvious when the data is extremely limited. The model refac-
toring method (Lin et al., 2020) performs well on the TORGO database
while not on the UASPPECH corpus because the parameter sharing
between layers degrades the capability of the model. The FC method
and MTL method obtains competitive performance while they need
more trainable parameters; it easily causes overfitting or insufficient
training.

Fig. 3(a) visualized the relative improvement of the staged KD with
𝜆 set as 0.95, 0.90, 0.80, 0.70. The staged KD makes use of the limited
data more effectively than the conditional TS. The results show that
𝜆 = 0.95 is the best boundary in the staged KD. Fig. 3(b) visualized
he relative improvement on IPPM that computes IPP-loss on different
ayers of the decoder, compared with the baseline. The IPPMs that
ompute IPP-loss on each layer all effective for dysarthric ASR. The
mprovement trend for speakers with varying degrees of dysarthria
s almost constant. It achieves the best results when the perceptive
eatures are extracted from the second layers of the ASAT decoders

hrough the IPP-loss.
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Table 3
Proportion (%) of the three categories of the mispronunciations on the TORGO database
and the UASPEECH corpus, comparing the methods with/without IPPM.

Datasets Method Mispronunciation type

VV CC CrossVC

TORGO
Model-ref. 4.02 5.96 1.86
+IPPM 3.4 5.09 1.67
RC (%) 15.42 14.60 10.22

UASPEECH
E2E-baseline 5.86 18.05 5.35
+IPPM 5.6 17.26 4.66
RC (%) 4.44 4.38 12.90

4.4. Analysis

This section mainly analysis the function of the IPPM on phoneme
decision correction. We roughly divide mispronounced phonemes into
three categories: mispronunciations between vowels (VV), mispronun-
ciations between consonants (CC), and crossing mispronunciations be-
tween vowels and consonants (Cross VC). Table 3 shows the proportion
of the three categories of mispronunciations on the TORGO database
and the UASPEECH corpus. We compared the methods without or with
IPPM and calculated the relative correction (RC%). From the table, the
IPPM is effective on all categories of mispronunciations. The relative
correction for the three mispronunciations varied according to the
datasets. It is worth noting that IPPM showed a significant effect on
feature correction for the Cross VC category in both datasets. It suggests
that restoring IPFs can effectively improve the machine’s recognition
of vowel and consonant sounds. Therefore, it can be inferred that the
IPPM is easier to estimate vowel-consonant-distinctive IPFs from the
typical features.

Consonants in dysarthric speech are more difficult than vowels. This
is evidenced by the high proportion of the CC category in both datasets,
shown in Table 3. For further analysis, we classify the defective conso-
nants into four types according to the place and manner of articulation,
and voiced or voiceless. Details are as follows:

(1) Place error (PE): intended consonants have defective articulatory
places in pronunciation (e.g., confuse /p/ with /t/ or /s/).

(2) Manner error (ME): intended consonants have wrong manner of
pronunciation (e.g., confuse /f/ with /p/ or /t/).

(3) Voicing error (VE): intended consonants have incorrect voice type
of voiced/voiceless (e.g., confuse /s/ with /z/, or vise versa).

(4) Mixture error (MixE): intended consonants have a mixed error
that consists of more than one type of errors described above (e.g.,
confuse /p/ with /s/ or /r/).

Table 4 shows the proportion and relative correction of the four
ypes of the errors, comparing the models with/without the IPPM.
ne can seen that the estimation is able to recover the IPFs from the
efective articulation of the consonants. Especially, the IPPM demon-
trated a powerful capability in recovering the IPFs from the deteriorate
rticulation with wrong manners as well as the one with mixed ar-
iculatory errors when the data is extremely limited. As the amount
f data increases, the role of IPPM in recovering IPFs decreases, and
ne possible reason is the powerful data-based learning ability of E2E
SR. Still, IPPM can correct mispronunciation at the hidden feature

evel. The statistical results verify the important role of estimated IPFs
n phoneme correction in speech recognition. In addition, it suggests
he necessity of recovering the IPFs in dysarthric speech recognition.
t is worth noting that the IPFs are not so effective in recovering the
oicing error type. A possible reason is that the voicing features are lost
n the ASAT system. This may prompt ideas of improving the method
7

y considering voicing attributes.
Table 4
Proportion (%) of the four types of the errors in defective consonants on the TORGO
database and the UASPEECH corpus, comparing the methods with/without IPPM.

Datasets Method Error type

PE ME VE MixE

TORGO
Model-ref. 6.80 12.97 3.87 5.09
+IPPM 5.93 12.27 3.42 4.33
RC (%) 12.79 5.40 11.63 14.93

UASPEECH
E2E-baseline 19.79 26.30 10.64 18.22
+IPPM 19.01 24.86 10.54 17.07
RC (%) 3.94 5.48 0.93 6.31

5. Discussions

In the above sections, we introduce two proposed methods for solv-
ing disordered ASR. To deal with the low-resource problem, the staged
knowledge distillation transfers the knowledge from the teacher model
in the stage to avoid the model overfitting to the auxiliary features
in normal speech. The performance shown in Section 4.3 validated
the necessity. The intended phonological perception method (IPPM)
addressed the challenge of the abnormality of speech by applying the
motor theory of speech perception to disordered ASR. This section fur-
ther reveals the mechanism of IPPM, mainly discussing the function of
the IPP-loss in the IPPM. The inspiration gained from these discussions
may prompt ideas for improved methods and future research.

The Speech Chain formed by speech production and perception
plays an important role in human communication. According to the
motor theory of speech perception (Liberman and Mattingly, 1985),
speech production and perception are sharing the same articulatory
gestures. The articulatory gestures are made up of a group of distinctive
articulatory features. In the perception of normal speech, articulatory
features are regarded as decisive factor for phoneme decision. Disor-
dered speech such as dysarthric, lost or replaced partial articulatory
features, and deteriorated integrity of the articulatory gestures. How-
ever, human can estimate the intended phonological features (IPFs) by
means of the articulatory features no matter that some of them are
lost. According to the potential links between speech production and
perception, and the continuity of articulatory movement, this study
aims at finding an effective method to estimate the IPFs in dysarthric
speech for reconstructing language phonology and then provide the
IPFs for ASR to guide the ambiguous phonemes decision. In principle,
the IPP-loss is an implementation based on the motor theory of speech
perception (Galantucci et al., 2006).

In terms of implementation structure, the IPP-Loss verifies the char-
acterization function of different levels of neural network. Computer
vision studies demonstrated that the bottom layers of the deep neural
network are good at describing the overt features, while the higher
layers are good at the abstract features (Yosinski et al., 2014; Johnson
et al., 2016). For example, lower layers tend to represent the simple
geometric parts of visual images and higher layers preserve overall
spatial structure but lost color, texture, and exact shape (Yosinski
et al., 2015). According to the analogue of audio and visual cognitions
(Zhou et al., 2018), we speculate that the function of the lower layers
mainly reflects simple features of the articulation, while the higher
layers correspond to the abstract articulatory gestures. Therefore, we
deduce the function of IPP-loss by referring to the process of image
processing. The IPP-loss estimated the IPFs in articulatory gestures by
minimizing the perceptive differences between phonological features
and articulatory features. The effectiveness of IPP-loss on the second
layer of decoders demonstrates that the second layer plays important
role in obtaining the IPFs of abnormal speech and shares common
gestures between speech production and perception. According to the
architecture of the Transformer (Dong et al., 2018), the decoder of
the ASAT system accepts articulatory place attributes in the first layer,
and the encoded speech features between each layer. It can be inferred
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that the first layer of the ASAT decoder extracted discrete features of
articulatory place attributes, and the second layer of the ASAT decoder
extracted more continuous and abstract features. These features seems
to the articulatory features sharing between speech production and
perception, making sense to recover the IPFs in ASR.

In summary, the IPP-loss function a bridge between speech pro-
duction and perception in the articulatory gesture level. It realizes the
unification of theory and technology.

Previous studies (Mengistu and Rudzicz, 2011b) shown that recog-
nition errors of dysarthric speech primarily arise from imprecise artic-
ulation and improper breathing, particularly in multiword utterances.
In this study, our focus primarily rested on addressing imprecise artic-
ulation, with insufficient consideration given to addressing breathing
irregularities. The errors resulting from improper breathing were not
excluded in this study, where they will be decreased after using a
garbage model. Consequently, we will incorporate this aspect to effec-
tively address these errors in future work. In addition, many of Davide
Mulfari’s works (Mulfari et al., 2023, 2022a,b), proposing methods to
build high-accuracy voice servers for dysarthric speakers, are highly
informative. For example, they used self-supervised systems of con-
trolled vocabulary to improve ASR performance. However, in our work,
our test sets provided no additional information apart from the audio
recordings. Words in the test set may not appear in the training set.
Therefore, the controlled vocabulary could not be directly applied in
this work. In the future, we will explore the incorporation of a language
model to govern the selection of output words.

6. Conclusion

This study focused on ASR for disordered speakers considering
low resources and abnormal articulation. To solve the low-resource
problem, we proposed staged knowledge distillation, which staged
transfers knowledge from general ASR to dysarthric ASR according to
the accuracy of the model, avoiding the model overfitting to the aux-
iliary features in the normal speech. To solve the speech abnormality
problem, we proposed the intended phonological perception method
by retrieving the intended phonological features (IPFs) in ASR for
correcting ambiguous phoneme decisions. Experiments on the TORGO
database and UASPEECH dataset confirmed the effectiveness of the
proposed methods in solving two problems. Furthermore, the experi-
ments demonstrated the necessity of recovering the IPFs in disordered
speech on correcting ambiguous phoneme decisions. Finally, this paper
suggests to enhance the method by considering voicing attributes in the
future research.
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