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ABSTRACT

In this study, we focus on detecting articulatory attribute
errors for dysarthric patients with cerebral palsy (CP) or
amyotrophic lateral sclerosis (ALS). There are two major
challenges for this task. The pronunciation of dysarthric
patients is unclear and inaccurate, which results in poor per-
formances of traditional automatic speech recognition (ASR)
systems and traditional automatic speech attribute transcrip-
tion (ASAT). In addition, the data is limited because of the
difficulty of recording. This study proposes an end-to-end
automatic speech attribute transcription (E2E-ASAT) method
for detecting articulatory attribute errors more precisely. To
use the limited data more effectively, the parameters of the
acoustic model are refactored into two layers and only one
layer is retrained. Our proposed method showed good perfor-
mances in both ASR and articulatory attribute detection. Our
system has a potential as a rehabilitation tool.

Index Terms— end-to-end model, dysarthric speech
recognition, articulatory attribute detection

1. INTRODUCTION

Dysarthria is a clinical category for neurogenic motor speech
disorders that associate muscular weakness [1]. Different
types of disorders are included in this category, of which
cerebral palsy (CP) and amyotrophic lateral sclerosis (ALS)
are the two of the most prevalent diseases [2]. CP is caused by
cortical lesions, while ALS is due to motor neuron degenera-
tion in the brain stem and spinal cord [3, 4]. These diseases
affect speech articulation leading to unclear, inaccurate and
unstable pronunciation [5]. Besides, dysarthria often accom-
panies physical disability, which suggests that speech could
be a convenient alternative to remotely control keyboard or
PC mouse and other machine interfaces [6]. However, tradi-
tional voice systems are not suitable for dysarthric patients
because of the distorted voice and the limited dysarthric
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speech. Therefore, a specialized voice system for dysarthric
patients is necessary.

The articulatory attributes describe phonetic properties of
human speech according to positions or movements of the
tongue, lips, and other organs to produce speech sounds [7].
In many related fields, articulatory information is utilized to
assist their research, such as speech comprehension improve-
ment [8], language learning [9, 10] and training of speech per-
ception and production [11, 12]. In speech therapy, rehabili-
tation training for patients can be completed with the help of
articulatory attributes detection [13].

Automatic speech attribute transcription (ASAT) is an au-
tomatic speech recognition (ASR) method based on buttom-
up attribute detection and knowledge integration. In previ-
ous studies [9, 10, 14, 15, 16, 17, 18, 19], many detectors
are trained to produce a bank of articulatory attributes. These
detectors are based on DNN-HMM systems, which requires
context-dependent frame-level articulatory labels. To further
improve the performance of ASAT, one method is to use end-
to-end ASR systems with well performances. For example,
automatic phone labeling (APL) is promising, which trans-
fers the phone sequences produced by the ASR system into
articulatory attributes sequences.

In this study, we present an end-to-end automatic speech
attribute transcription (E2E-ASAT) system for dysarthric pa-
tients with CP or ALS. We investigate an effective method of
articulatory attribute modeling for articulatory attribute detec-
tion, which directly learns the mapping between acoustic fea-
tures and articulatory attribute based on a recent transformer-
based E2E framework. To use the limited data more effec-
tively, the parameters of the acoustic model are refactored
into two layers, and only one layer is retrained. Compared
with the traditional APL method, the E2E-ASAT has the ad-
vantages of high precision and convenience.

The rest of this paper is organized as follows. Section 2
describes our proposed method. Section 3 gives the data de-
scription and experiment evaluations. Conclusion and future
work are given in Section 4.

7349978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 09,2022 at 07:01:29 UTC from IEEE Xplore.  Restrictions apply. 



2. PROPOSED METHOD

The proposed method of this paper has three components, and
they are described in following subsections.

2.1. Articulatory Representations for English Sounds

Table 1. English consonant list with the manner (row) and
place (column) attributes

L
abial

(L)

D
ental

(D)

A
lveolar

(R)

Post-alveolar

(P)

Palatal

(T)

V
elar

(V)

G
lottal

(G)

Plosives (p) p / b t / d k / g
Affricates (a) /
Nasals (n) - / m - / n - /
Fricatives (f ) f / v / s / z / h / -
Approximants (x) - / r - / j - / w
Laterals (l) - / l

Phones beside / are: voiceless (s) / voiced (v). Both voiceless and voiced
are voicing attributes.

Fig. 1. Schematic diagram of English vowels with attributes

As remarked in Section 1, the articulatory attributes de-
scribe the place and manner of articulation with voicing
contrasts. The attributes of consonants are determined by
the place and manner of articulation, while those of vow-
els are determined by vertical (high/mid/low) and horizontal
(front/central/back) positions of the tongue and the shapes of
the lips [18].

In this paper, we transcribe phones into the articulatory
attributes using the mapping rules (Table 1 and Fig. 1),
which are made according to [7, 18, 20]. In these rules, each
consonant has two manner attributes (manner of articulation
and voicing), and one place attribute, and each vowel has
three place attributes. Diphthongs are regarded as set of two
monophthongs. Considering that the poor flexibility of the
patient’s tongue, we classify tongue-high and tongue-mid as

Fig. 2. An example of converting phones to articulatory rep-
resentations: Glottal (G), Post-alveolar (P), Palatal (T), Fricatives (f ),
Approximants (x), Voiceless (s), Voiced (v), Back (b), Open (o), Non-open
(no), Rounded (r), Unrounded (u)

non-open (no) attribute and classify the tongue-low as open
(o) attribute. In addition, the front of the tongue is classified
as non-back (nb) attribute, and the central/back of the tongue
is classified as back (b) attribute. Fig. 2 is an example of
converting phones to articulatory representations.

2.2. Refactored Transformer-based E2E Model for Low-
resourced Data

The transformer [21, 22] is a sequence-to-sequence attention-
based model, which consists of an encoder and decoder. Each
encoder and decoder has six blocks. Each block in the en-
coder contains a multi-head self-attention mechanism (MHA)
and fully connected feed-forward network layers. Each block
in the decoder has similar structure but with an extra masked
MHA layer. The transformer has been demonstrated to have
excellent ASR performance [22].

In dysarthric speech recognition, due to the limited train-
ing data, directly training a transformer-based model with a
large number of parameters is not effective. We adopt the
following steps for training. The first step is pre-training of
a well-performed ASR model with a large amount of En-
glish non-dysarthric speech, which outputs English phone
sequences. The next is to refactor the network into fixed-
layers and update-layers. Parameters of the fixed-layers are
copied from the pre-trained model. Only the update-layers
are trained during model training and their parameters are
shared in the update-layers using the same method in [23].
After the experiments, we found that using the whole encoder
as the fixed-layers and the whole decoder as the update-layers
can achieve the best result.

2.3. E2E-ASAT for Dysarthric Speech

The E2E-ASAT is based on the method introduced in Section
2.2. As a comparison, several ASR systems for dysarthric

7350

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 09,2022 at 07:01:29 UTC from IEEE Xplore.  Restrictions apply. 



speech based on the same method are trained for APL.

3. EXPERIMENT EVALUATIONS

3.1. Data Description

We use the TORGO database [24] and Librispeech corpus
[25] in this experiment. Speech files in the TORGO database
are recorded by a microphone array and a head-worn micro-
phone with a 16 kHz sampling rate. This database contains
seven patients and seven healthy control speakers (4 males
and 3 females). All the patients in this database are with CP
or ALS.

Our models are pre-trained with a large amount of En-
glish non-dysarthric speech and fine-tuned with a small
amount of English non-dysarthric speech and dysarthric
speech. For pre-training, we use 500-hour non-dysarthric
speech from Librispeech corpus. For fine-tuning, we use
2-hour dysarthric speech (2 males and 2 females) and 4-hour
non-dysarthric speech (4 males) in the TORGO database
(TORGO-trn). When evaluating the models, we used another
1-hour dysarthric speech (2 males and 1 female) from the
TORGO database (TORGO-tst). All of these data sets are
listed in Table 2.

Table 2. English data set in dysarthric speech recognition
(NS: non-dysarthric speech, DS: dysarthric speech)

Dataset Speech Duration Speaker Utter.
Type (Hours) Num. Num.

Training Librispeech NS 600 1256 63799
TORGO-trn NS+DS 6 8 6484

Testing TORGO-tst DS 1 3 1207

We use 120-dim log Mel-filterbank energy features (40-
dim static, +∆, and +∆∆), which were mean- and variance-
normalized per speaker, and every four frames were spliced
(three left, one current and zero right). The lower and higher
cut-off frequencies are set to 20 Hz and 8000 Hz. In order to
augment the training data, speed-perturbation [26] are used in
the fine-tuning stage.

3.2. Model Training

All of our experiments employ implementation of the trans-
former based machine translation (NMT-Transformer) [21] in
tensor2tensor1. The training and testing settings are similar to
those in [7].

3.3. Speech Recognition Evaluation

As shown in Table 3, we train a series of systems (with
method S1 to S5) and evaluate their performance of ASR
with the phone error rate (PER%). These systems use 500

1https://github.com/tensorflow/tensor2tensor

hours of non-dysarthric speech from librispeech database for
pre-training. The settings are listed as follows:

• S1 (baseline): The full net is fine-tuned (ft-full) using
of TORGO-trn dysarthric speech (TORGO-trn-DS) and
TORGO-trn non-dysarthric speech (TORGO-trn-NS).

• S2: Based on S1, another 100 hours non-dysarthric
speech speech from Librispeech corpus (Libri100) are
added for data augmentation (DA).

• S3: Based on S1, only the decoder is fine-tuned (ft-
decoder).

• S4: All the TORGO-trn speech is used with speed-
perturbation (sp). The network is refactored.

• S5: Based on S4, 8 systems listed from S1 to S4 are
combined with ROVER [27].

Table 3. Phone error rate (PER%) of all the methods
Methods Training data PER%

S1 (ft-full) TORGO-trn-DS 66.54
S1 (ft-full, baseline) TORGO-trn-(DS+NS) 48.35
S2 (+ DA) TORGO-trn-(DS+NS) + Libri100 45.57
S3 (ft-decoder) TORGO-trn-(DS+NS) 39.53
S4 (refactor) TORGO-trn-DS 68.22

TORGO-trn-DS (+sp) 62.29
TORGO-trn-(DS+NS) 35.19
TORGO-trn-(DS+NS) (+sp) 31.03

S5 (+ 8-sys. ROVER) / 27.13

From the results in Table 3, we observe that the DA is
not so effective compared to other methods (especially in ft-
decoder), not to say the large amount of training data causes
massive training time. The parameter refactoring is a more
effective method compared with traditional method (fine-tune
full/part net or data augmentation).

3.4. Articulatory Attributes Detection Evaluation

Fig. 3. Detection error rate (DER%) of individual attribute
types for the three systems
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In Fig. 3, we compared the overall and individual attribute
detection error rates (DER%) of APL and E2E-ASAT intro-
duced in Section 2.3, as well as the DER% of the system
that combines APL-S5 and E2E-ASAT systems with ROVER.
APL-S5 means mapping the phones produced by S5-based
ASR system to articulatory attributes. As expected, the pro-
posed E2E-ASAT method significantly outperforms APL. As
for the rest, the combined system performs better than either
individual system in articulatory attribute detection.

Fig. 4 to Fig. 6 are the normalized confusion matrices of
vowel and consonant attributes from the combined attribute
detection system. The asterisk (*) in the figures indicates
the blank. The row with the asterisk indicates insertion er-
rors, and the column with the asterisk indicates deletion er-
rors. From these confusion matrices, we observe that the
E2E-ASAT is more accurate than the traditional methods in
articulatory attribute detection.

Furthermore, we obtain the following summaries:

1) The consonant detection error rate (DER%) is highest
in both affricates (a) and laterals (l) for the manner of
articulation, and it is highest in both dentals (D) and
glottals (G) for the place of articulation. In other words,
these attributes are more laborious for dysarthric pa-
tients.

2) For voicing of consonants, we observe from the exper-
iments that it is easier for patients to make voiceless
consonants (s), except for glottal consonants (G).

3) Vowels and some consonants are all closely related to
the movement of the tongue. As for the place of articu-
lation, the DER% of the consonants is lowest in alveo-
lar (R) and post-alveolar (P), and the DER% of back (b)
vowels are higher than that of non-back (nb) vowels.
It means that dysarthric patients tend to articulate with
centralized tongue positions, and it is difficult for them
to produce sounds with extreme front or back positions
of the tongue (i.e., back vowels (b), dental consonants
(D), palatal consonants (T), velar consonants (V)).

Above all, these findings can be used for mispronuncia-
tion detection in patients with dysarthria.

Fig. 4. Confusion matrices of vowels attribute: Open (o), Non-
open (no), Back (b), Non-back (nb), Rounded (r), Unrounded (u), Blank (*)

Fig. 5. Confusion matrices of consonants with place at-
tributes: Labial (L), Dental (D), Alveolar (R), Post-alveolar (P), Palatal
(T), Velar (V), Glottal (G), Blank (*)

Fig. 6. Confusion matrices of consonants with manner at-
tributes: Plosives (p), Affricates (a), Fricatives (f ), Nasal (n), Approxi-
mants (x), Laterals (l), Voiced (v), Voiceless (s), Blank (*)

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective method for training
E2E-ASAT system for articulatory attribute detection in pa-
tients with dysarthria. Different from traditional APL method,
we built acoustic-to-articulatory mapping directly within the
transformer based E2E framework. The attribute detection
accuracy of our proposed E2E-ASAT model significantly out-
performed that of the traditional method. Furthermore, the
combined system achieved the highest accuracy and has a po-
tential to assist patients in rehabilitation training. In the fu-
ture, we will build a concrete E2E-ASAT system for mispro-
nunciation detection with more dysarthric speech data.
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